- #1

- 49

- 0

## Main Question or Discussion Point

Hello:

There is a well known theorem which asserts that every attractive 1D potential has at least one bound state; in addition, this theorem does not hold for the 2D or 3D cases. I've been looking for a proof in my textbooks on qm but I've been unable to find it. Can you help me out?

Thanks!

There is a well known theorem which asserts that every attractive 1D potential has at least one bound state; in addition, this theorem does not hold for the 2D or 3D cases. I've been looking for a proof in my textbooks on qm but I've been unable to find it. Can you help me out?

Thanks!