1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Boundary layer question

  1. Apr 19, 2006 #1
    Here is the problem: (From sabersky, problem 8.9)

    Vapor condenses on a vertical surface to form a liquid film. The film moves under gravity and forms a laminar liquid boundary layer. Derive an expression for the mass flow rate dm/dt as a function of the local film thickness [itex]\delta[/itex]. Neglect any velocity components in the y-direction. (the positive x direction is down and y points away from the solid surface)

    Answer: dm/dt=[itex]\rho g \delta^3/3 \nu [/itex], where [itex]\rho[/itex] is the density and [itex]\nu[/itex] is the kinematic viscosity.

    I'm really stuck on this one. The continuity equation is useless because there must be vapor condensing on to the film (or else dm/dt would be constant). Assuming this vapor has no momentum, I was able to use the momentum equation to get:

    [tex]\frac{\partial}{\partial x} \int_0^\delta \rho u^2 dy =-\tau_0+\rho g[/tex]

    where [itex]\tau_0[/itex] is the shear force at the solid surface. Since g and [itex]\nu[/itex] appear not as a sum but as a product in the final answer, I assume there must be another equation relating them. Can anyone help me out here?
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?