A boy of mass m = 50 kg running with speed v = 4 m/s jumps onto the outer edge of a merry-go-round of mass M = 150 kg and radius R = 2 m, as shown in the picture above. The merry-go-round is initially at rest, and can rotate about a frictionless pivot at its center. You may assume that the inital velocity of the boy is tangent to the edge of the merry-go round.(adsbygoogle = window.adsbygoogle || []).push({});

Treat the boy as a point particle and the merry-go-round as a uniform solid disk. What is the angular velocity of the merry-go-round after the boy has jumped onto it?

I don't know if I can do this, but I set the linear momentum of the boy equal to the angular momentum of the merry-go-round with the boy.

Basically, mv = Iw

For my moment of inertia, I used the sum of both masses and plugged my given information into ((M+m)R^2)/2. This was how I calculated moment of inertia. Then I plugged the boy's mass and his initial speed divided by my moment of inertia and tried to get omega (w). I got 0.5 exactly, but it's not correct. Any help would be appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Boy and Merry-Go-Round

**Physics Forums | Science Articles, Homework Help, Discussion**