1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Branch cuts

  1. Mar 13, 2008 #1
    We are asked to find a branch where the multi-valued function is analytic in the given domain.

    The function: [itex](4+z^2)^{1/2}[/itex] in the complex plane slit along the imaginary axis from -2i to 2i.

    The principal branch is [itex]\exp(\frac{1}{2} Log(4+z^2))[/itex] and so we want analyticity from -2i to 2i. It seems to me that this is obeyed and the cuts appear when |z|>2i. When |z|>2i we see that the term inside Log become negative, when |z|<2i,the term inside the Log is positive. Does this mean the principal branch is a branch that is analytic in the given domain? I referred to the back of the book and it gave a different branch, namely [itex]z \exp(\frac{1}{2} Log(1+\frac{4}{z^2})})[/itex], what went wrong?

    The function is: [itex](z^4-1)^{1/2}[/itex] in |z|>1.

    The principal branch is [itex]\exp(\frac{1}{2}Log(z^4-1))[/itex] and so we want analyticity when |z|>1. However, we see that this is already the case. Because within the unit circle, z^4 is positive, and subtracting 1 makes z^4-1 negative. We want analyticity when |z|>1 which is the case since z^4 is now positive and larger than 1, making z^4-1 positive when |z|>1. Again, I feel that the principal branch works, however, the back of the book gives a different result [itex]z^2 \exp{\frac{1}{2} Log(1-\frac{1}{z^4})}[/itex]

    The function in d is: [itex](z^3-1)^{1/2}[/itex] in |z|>1.

    I could make the same argument as above, and say the principal branch of [itex]\exp(\frac{1}{2} Log(z^3-1))[/itex] works. However, again, this disagrees with the result in the back of the text: [itex]z\exp(\frac{1}{3} Log(1-\frac{1}{z^3}))[/itex]
    Last edited: Mar 13, 2008
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?