1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Buoyancy Laboratory FRQ

  1. Oct 25, 2009 #1
    1. The problem statement, all variables and given/known data
    In the laboratory, you are given a cylindrical beaker containing a fluid and you are asked to determine the density [tex]\rho[/tex] of the fluid. You are to use a spring of negligible mass and unknown spring constant k attached to a stand. An irregularly shaped object of known mass m and density D > [tex]\rho[/tex] hangs from the spring, so that the object (but non of the spring) is immersed in the fluid. You may also choose from among the following items to complete the task.
    • A metric ruler
    • A stopwatch
    • String

    Explain how you could experimentally determine the density of the fluid. Show explicitly, using equations, how you wuill use your measurements to calculate fluid density [tex]\rho[/tex]. Start by identifying any symbols you use in your equations.

    2. Relevant equations
    Fbuoyancy = [tex]\rho[/tex]fluidVobjectG
    [tex]\rho[/tex] = m/v
    [tex]\rho[/tex]obj/[tex]\rho[/tex]fluid = Vfluid/Vobj


    3. The attempt at a solution
    I'm pretty much at a loss on this one. Seeing as I have the density of the object and its volume, I could plug that into the 3rd equation. However, I'm wondering if the third equation only applies to floating objects, as in this experiment, the object will sink. I can't figure out a way to obtain the fluid's mass, either. Thank you for the help.
     
  2. jcsd
  3. Oct 25, 2009 #2

    Delphi51

    User Avatar
    Homework Helper

    Looks like you will have to work with the spring and its hanging mass.
    What will happen to the spring when you slowly lift the mass out of the fluid?
     
  4. Oct 25, 2009 #3
    Will the spring extend to its maximum length, since there is no more buoyant force pushing it up any more?
     
  5. Oct 25, 2009 #4

    Delphi51

    User Avatar
    Homework Helper

    Okay, you've got a start! You could measure the change in the extension with that ruler. Suggest you write some spring formulas and see if you can find anything from that.

    Quite an interesting problem! I don't see my way through it yet!
     
  6. Oct 25, 2009 #5
    The force of the spring is -kx, so by measuring the change in the x and using that equation, I would get the buoyant force? And with that, I would be able to use F=pvg, to solve for p. Am I correct?
     
  7. Oct 25, 2009 #6

    Delphi51

    User Avatar
    Homework Helper

    That sounds very promising. Remember, you don't have "x", you only have x2 - x1 or Δx so you need to play with F = kx (I hate that minus sign!) a little more. Don't abandon your other spring formulas just yet - make sure you write them all down on your scrap paper so you don't concentrate all your attention on this one.
     
  8. Oct 25, 2009 #7
    Hm, would it work if I simply measured the length of the spring of when the object is submerged and of when it is not, and find the difference in the forces, which would be the buoyant force?
     
  9. Oct 25, 2009 #8

    Delphi51

    User Avatar
    Homework Helper

    Maybe. Start with F1 = kx1 and see if it works out.
     
  10. Oct 25, 2009 #9
    Well the units work out, and I don't see why it wouldn't work out conceptually. Thank you for your help!
     
  11. Oct 25, 2009 #10

    Delphi51

    User Avatar
    Homework Helper

    So, do you know the value of k?
     
  12. Oct 25, 2009 #11
    Well there are no numbers involved in this FRQ, just variables. But yes, I can find k using the stopwatch and timing a period, then use T = 2[tex]\pi[/tex][tex]\sqrt{}m/k[/tex]
     
  13. Oct 25, 2009 #12

    Delphi51

    User Avatar
    Homework Helper

    Oh, good thinking!
    But you don't know the mass . . .
    If you knew the mass, you could find the buoyant force . . .
    But still not the density because you don't know the volume.
    More thinking still to do, but you have a good start.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Buoyancy Laboratory FRQ
  1. Buoyancy (Replies: 5)

  2. Lens Laboratory (Replies: 6)

Loading...