- #1
- 528
- 33
If I have an object of mass m tied to the lower surface of a vessel having a liquid and the vessel accelerates upwards...
From FBD of object, Buoyant force acts upwards, mg down, pseudo force downwards (frame of reference is vessel) T down.
Here's the doubt. Why is F(buoyant force) = Vp(g+a) when I have already considered pseudo force?
Given in textbook: ##Vp(g+a)-mg-T=ma##
But when I take the vessel as the frame of reference,
Shouldn't this be the equation: ##Vpg-mg-T-ma=0##
They say ##F=Vpg1##
g1=effective gravity
From FBD of object, Buoyant force acts upwards, mg down, pseudo force downwards (frame of reference is vessel) T down.
Here's the doubt. Why is F(buoyant force) = Vp(g+a) when I have already considered pseudo force?
Given in textbook: ##Vp(g+a)-mg-T=ma##
But when I take the vessel as the frame of reference,
Shouldn't this be the equation: ##Vpg-mg-T-ma=0##
They say ##F=Vpg1##
g1=effective gravity