What am I doing wrong here?(adsbygoogle = window.adsbygoogle || []).push({});

Here's the problem:

For the arrangement descripbed in the previous problem (see attachment), calculate the electric potential at point B that lies on the perpendicular bisector of the rod a distance b above the x axis.

[lamb] = [alpha] x where [alpha] is a constant.

The correct answer is

V = -(k[alpha]L/2)ln(([squ] [(L^2/4) + b^2)] - L/2)/[squ] [(L^2/4) + b^2)] - L/2))

I'm not getting the same answer.

So far I've got the following: [the] = [<]'a' on the diagram.

V = kq/r

x' = btan[the]

dx' = bsec^2[the]d[the]

x = L/2 + x'

r = bsec[the]

dq = [lamb]d(L/2 + x') = [lamb]dx'

dq = [alpha](L/2 + x')dx' = [alpha](L/2 + btan[the])bsec^2[the]d[the]

so dV = k[alpha](L/2 + btan[the])bsec^2[the]d[the]/bsec[the]

Taking the integral of both sides from -[the] to +[the] doesn't yield the correct result.

I'd appreciate it if someone could point out where I went wrong. I have a feeling the problem's in [lamb] = dq/dL = dq(L/2 + x').

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Calculate the Electric Potential

**Physics Forums | Science Articles, Homework Help, Discussion**