# Calculate the limit help

#### walker242

1. Homework Statement
Calculate the limit of
$$\lim_{x\rightarrow \infty} \frac{\sqrt{x^{2}+5} - x}{\sqrt{x^{2}+2} - x}$$

2. Homework Equations
-

3. The Attempt at a Solution
Neither multiplying with the conjugate nor trying to break out x helps me, as I'm left with "0/0" in those cases.

Related Calculus and Beyond Homework Help News on Phys.org

#### lanedance

Homework Helper
Re: $\lim_{x\rightarrow\infty} \frac{\sqrt{x^{2}+5} - x}{\sqrt{x^{2}+2} - x}$

do you know l'hopitals rule? could help here i think

#### walker242

Re: $\lim_{x\rightarrow\infty} \frac{\sqrt{x^{2}+5} - x}{\sqrt{x^{2}+2} - x}$

While I do know l'Hopitals rule, we have not yet covered it in the course. The problem should be solved without using (sadly).

#### lanedance

Homework Helper
Re: $\lim_{x\rightarrow\infty} \frac{\sqrt{x^{2}+5} - x}{\sqrt{x^{2}+2} - x}$

1. Homework Statement
Calculate the limit of
$$\lim_{x\rightarrow \infty} \frac{\sqrt{x^{2}+5} - x}{\sqrt{x^{2}+2} - x}$$
how about this, multiply by both conjugates of the numerator & denominator to get:

$$\lim_{x\rightarrow \infty} \frac{5 \sqrt{x^{2}+2} + x}{2 \sqrt{x^{2}+5} +x}$$

already looking in better shape, as its not a difference term that is leading to the zero, which ws the tricky bit, so from here I'd try multiplying through by:

$$\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{x}}$$

this should change the terms containing x in the numerator & denominator from tending to infinity, to ones tending to zero...

#### walker242

Re: $\lim_{x\rightarrow\infty} \frac{\sqrt{x^{2}+5} - x}{\sqrt{x^{2}+2} - x}$

how about this, multiply by both conjugates of the numerator & denominator to get:

$$\lim_{x\rightarrow \infty} \frac{5 \sqrt{x^{2}+2} + x}{2 \sqrt{x^{2}+5} +x}$$

already looking in better shape, as its not a difference term that is leading to the zero, which ws the tricky bit, so from here I'd try multiplying through by:

$$\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{x}}$$

this should change the terms containing x in the numerator & denominator from tending to infinity, to ones tending to zero...
$$\lim_{x\rightarrow \infty} \frac{5\sqrt{x^{2}+2} + x}{2\sqrt{x^{2}+5} +x} = \lim_{x\rightarrow\infty} = \frac{5}{2}\frac{x(\sqrt{1+\frac{2}{x}})+1}{x(\sqrt{1+\frac{5}{x}})+1} = \frac{5}{2}\cdot\frac{2}{2} = \frac{5}{2}$$

Cheers!

#### checkitagain

Re: $\lim_{x\rightarrow\infty} \frac{\sqrt{x^{2}+5} - x}{\sqrt{x^{2}+2} - x}$

$$\lim_{x\rightarrow \infty} \frac{5\sqrt{x^{2}+2} + x}{2\sqrt{x^{2}+5} +x} =$$

$$\lim_{x\rightarrow\infty}\frac{5}{2}\cdot \lim_{x\rightarrow\infty}\frac{x\bigg( \sqrt{1+ \frac{2}{x^2}} + 1\bigg)}{x\bigg(\sqrt{1 + \frac{5}{x^2}}+1\bigg)} =$$

$$\frac{5}{2}\cdot\frac{2}{2} = \frac{5}{2}$$
There were some significant errors in this (highlighted in the

quote box) post from a user, that I felt one of the corrected

versions should be shown.

#### micromass

Re: [itex]\lim_{x\rightarrow\infty} \frac{\sqrt{x^{2}+5} - x}{\sqrt{x^{2}+2} - x}[/it

This thread is 2 years old. You've been here long enough to know not to necropost.

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving