- #1

- 10

- 0

**The problem**

The exercise goes like this:

A sinusoidal source v(t) = 40 sin(100t) its applied to a circuit RLC with L=160 mH, C=99 μF and R=68Ω.

**Calculate**

a) the impedance of the circuit

b) the maximum current

**My solution**

a)

If v(t) = 40 sin(100t) --> ω=100Hz

Z= [itex]\sqrt{R^{2} + \left(Xl-Xc\right)^{2}}[/itex]

Z = 108,86 Ω

b)

I know that

[itex]ic(t)= C\frac{dv}{dt} -> v(t)= \frac{1}{C}\int idt[/itex]

[itex]v(t)=Ri(t)[/itex]

[itex]v(t)= L \frac{di}{dt}[/itex]

[itex]v(t)=Ri(t) + L \frac{di}{dt} + \frac{1}{C}\int idt[/itex]

Ok, I'm stuck here. I know v(t), R, L and C. But I'm not sure how to get it.

Thanks for you help