Hello, I want to calculate the sum of this series:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\sum_{n=1}^\infty \frac{3^n+1}{4^n+2}[/tex],

I know the series converges, I only found this useful way to factor the denominator:

[tex] 4^n+2=2^{2n}+2=4^n(1+2^{-2n+1})[/tex],

now i have: [tex]\frac{3^n+1}{4^n+2}=(\frac{3^n}{4^n}+\frac{1}{4^n})(\frac{1}{1+2^{-2n+1}})[/tex],

i can calculate [tex]\sum_{n=1}^\infty \frac{3^n}{4^n}+ \sum_{n=1}^\infty \frac{1}{4^n}[/tex]but what should be done with

[tex]\frac{1}{1+2^{-2n+1}}[/tex]?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Calculate this sum

**Physics Forums | Science Articles, Homework Help, Discussion**