- #1

- 52

- 0

I have been given an assignment, a small one, which simply takes in number of points in cartesian coordinate format: (x, y) - then - the assignment specified that the program needed to calculate distances of every permutation possible - then return with the set(s) of points that had the shortest distance.

The problem given is simple, and I have coded in C - works perfectly OK.

But here's the

What is the number of distance calculations executed by your program for an input instance of "N" points, as a function of "N", expressed in Big-Oh notation? JUSTIFY your answer.

I know that my program (which I think is efficient enough at this stage) calculates in this many steps:

[tex]f(x) = \sum_{n=2}^N (x - 1)[/tex]

I also know that Big-Oh notation is something that f(x) is asymptotic to. For example:

[tex]g(x) = O(f(x)) = c.f(x) = c.\sum_{n=2}^N (x - 1)[/tex]

Is this correct way of looking at the Big-Oh notation? How would I find the value of c?

Thanks

The problem given is simple, and I have coded in C - works perfectly OK.

But here's the

**problem**:What is the number of distance calculations executed by your program for an input instance of "N" points, as a function of "N", expressed in Big-Oh notation? JUSTIFY your answer.

I know that my program (which I think is efficient enough at this stage) calculates in this many steps:

[tex]f(x) = \sum_{n=2}^N (x - 1)[/tex]

I also know that Big-Oh notation is something that f(x) is asymptotic to. For example:

[tex]g(x) = O(f(x)) = c.f(x) = c.\sum_{n=2}^N (x - 1)[/tex]

Is this correct way of looking at the Big-Oh notation? How would I find the value of c?

Thanks

Last edited: