I am modeling a non-linear phenomenon. For that i need to calculate electric field distribution of a laser beam.(adsbygoogle = window.adsbygoogle || []).push({});

I will be using pulsed laser beam with following parameters:

" Laser pulse with 500-microJ pulses(Ep) at 1.064 micro-m with 12.5-KHz (f) repetition

rate, pulse duration = 20 ns (2*T), and beam radius = 0.2 mm (w) "

From this data i need to calculate, Intensity distribution and from there i need to calculate Electric field distribution both of which are Gaussian in nature. I have done this as follows:

First the peak power = (pulse energy)/Pulse duration = 500μJ/20ns = 25 KW.

Now, taking beam radius to be 200μm, Peak Intensity (Io) = 25 KW/(π*w^2)= 19.89 MW/cm^2;

Now as i know that the distribution is Gaussian, I am using the following equation for creating the distribution.

I = Io*exp(-(t/T)^2)*exp(-(r/w)^2)

Now, I = (cnεo *|E|^2)*0.5

I would like to ask if the above calculation is right.

I thank you for your valuable time.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Calculating Intensity distribution, Electric Field distribution for pulsed laser.

**Physics Forums | Science Articles, Homework Help, Discussion**