- #1
VinnyCee
- 489
- 0
Here is the problem:
Find the polar moment of the region that lies inside the circle [tex]r = 3[/tex] and outside the cardiod [tex]r = 2 + \sin\theta[/tex]. Assume [tex]\delta = r\theta[/tex]
Here is what I have:
[tex]I_{0} = I_{x} + I_{y}[/tex]
[tex]I_{0} = \int_{0}^{2\pi}\int_{2 + \sin\theta}^{3}\;r^3\;\theta\;\sin^2\theta\;dr\;d\theta + \int_{0}^{2\pi}\int_{2 + \sin\theta}^{3}\;r^3\;\theta\;\cos^2\theta\;dr\;d\theta[/tex]
[tex]I_{0} = \int_{0}^{2\pi}\int_{2 + \sin\theta}^{3}\;r^3\;\theta\;dr\;d\theta[/tex]
Is this the correct setup? I don't have to manually evaluate this one, I just need to setup the integral limits and the integrand. Thank you in advance!
Find the polar moment of the region that lies inside the circle [tex]r = 3[/tex] and outside the cardiod [tex]r = 2 + \sin\theta[/tex]. Assume [tex]\delta = r\theta[/tex]
Here is what I have:
[tex]I_{0} = I_{x} + I_{y}[/tex]
[tex]I_{0} = \int_{0}^{2\pi}\int_{2 + \sin\theta}^{3}\;r^3\;\theta\;\sin^2\theta\;dr\;d\theta + \int_{0}^{2\pi}\int_{2 + \sin\theta}^{3}\;r^3\;\theta\;\cos^2\theta\;dr\;d\theta[/tex]
[tex]I_{0} = \int_{0}^{2\pi}\int_{2 + \sin\theta}^{3}\;r^3\;\theta\;dr\;d\theta[/tex]
Is this the correct setup? I don't have to manually evaluate this one, I just need to setup the integral limits and the integrand. Thank you in advance!