1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Calculating work function of a metal given stopping potential and frequency of light

  1. Aug 28, 2012 #1
    1. The problem statement, all variables and given/known data
    In a particular photocell, light with a frequency of 8×10^14Hz is directed onto the cell and it is found that a stopping potential of 1.2V is needed to reduce the photoelectric current to zero.
    Calculate the work function of the metal in the cell.


    2. Relevant equations
    E=hf
    E=hc/λ
    hf=[itex]\phi[/itex] + Ek

    3. The attempt at a solution
    Not much luck with this. Most sources that calculate the work function require the threshold frequency first, but we don't have that. Using E=hf and E=hc/λ I managed to find the energy of the light/photon as 5.304×10^-19 and the wavelength to be 3.725×10^-7 but now I'm stuck.
     
  2. jcsd
  3. Aug 28, 2012 #2
    Re: Calculating work function of a metal given stopping potential and frequency of li

    I think you need to look at the experimental setup and then consider what is necessary to have the experiment exhibit the following behaviour.

    A photon smashes into the surface of the metal and causes an electron to be ejected from the surface. Change the experiment parameters a bit and now the incoming photon doesn't manage to knock an electron off the surface.
     
  4. Aug 28, 2012 #3

    CAF123

    User Avatar
    Gold Member

    Re: Calculating work function of a metal given stopping potential and frequency of li

    The maximum kinetic energy carried by an electron is related to the stopping potential. To reduce the photo current to zero, the stopping potential has to overcome the kinetic energy of the electrons. Therefore, [itex] E_K = e V_s .[/itex] But you also know, from equation 3 in your list that [itex] hf = E_K + \phi. [/itex] You can now solve for [itex] \phi.[/itex]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Calculating work function of a metal given stopping potential and frequency of light
Loading...