- #1
- 140
- 2
Hi, I'd like to compute the de Rham cohomology of the 3 following objects :
-A connected sum of ##g \in \mathbb{N}## reals projectives plans ##P_{2}(\mathbb{R})##.
-A connected sum of ##g \in \mathbb{N}## torus without ##n## points ##\mathbb{T}^{2} - \{x_{1}, x_{2}, ..., x_{n}\}##.
- A connected sum of ##g \in \mathbb{N}## reals projectves plans without ##n## points ##P_{2}(\mathbb{R}) - \{x_{1}, x_{2}, ..., x_{n}\}##.
I'll wrote ##[]## to talk about the class of an element in ##M = P_{2}(\mathbb{R})##.
By connexity I get : ##H^{0}(M) = \mathbb{R}## and by dimension I get ##H^{p}(M) = \{0\}## for ## p > 2##.
Here is what I tried to : let's focus on the first sum :
If ##g = 1## I consider the 2 opens ##U = P_{2}(\mathbb{R}) - [((1, 0, 0)]## : it has the same homotopy as ##P_{1}(\mathbb{R}) \simeq \mathbb{S}_{1}## so the same de Rham cohomology. I consider ##V = \{ [(x, y, z)] \in P^{2}(\mathbb{R}) | x \neq 0\}## which as the same homotopy as ##\mathbb{R}^{2}##. We have that ##U \cup V = M## and ##U \cap V## has the same cohomology than a plan miness a point so the cohomology
than a circle.
Thanks to Mayer-Vietoris, I got the following exact sequences :
##0 \mapsto \mathbb{R} \mapsto \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R} \mapsto H^{1}(M) \mapsto \mathbb{R} \mapsto \mathbb{R} \mapsto H^{2}(M) \mapsto
0 ~ (1)##
The 3th ##\mapsto## is the application ##(x, y) \mapsto x - y## which is surjective. By exactitude we get that ##H^{1}(M) \hookrightarrow \mathbb{R}## so it's ##\mathbb{R}## or ##\{0\}##.
I also know that if ##0 \mapsto E_{1} \mapsto ... \mapsto E_{n} \mapsto 0## is an exacte seqeunces between finite dimension spaces I got ##\sum_{i = 0}^{n} (-1)^{i}dim(E_{i})## but I have to unkown dimension in by sequence ##(1)##.
So how solve this? Whatever the open ##U, V## I take, I always got twoo unkown.
Feel free to move the thread in homework if you think I'll get more answer.
The problem comes from here : http://www.math.u-psud.fr/~paulin/notescours/cours_geodiff.pdf : page 246 exercice 141.
Notice that the method the author use above to look for the de Rham cohomology of a connected sum of thorus is such that he has twoo unknown dimension. But he claims he compute ##H^{2}## with another method or by knowing the morphism (but if I look Mayer-Vietoris theorem proof, we only know the morphism between ##H(M), H(U) \times H(V)##).
Could you help me please?
I wish you a good day.
-A connected sum of ##g \in \mathbb{N}## reals projectives plans ##P_{2}(\mathbb{R})##.
-A connected sum of ##g \in \mathbb{N}## torus without ##n## points ##\mathbb{T}^{2} - \{x_{1}, x_{2}, ..., x_{n}\}##.
- A connected sum of ##g \in \mathbb{N}## reals projectves plans without ##n## points ##P_{2}(\mathbb{R}) - \{x_{1}, x_{2}, ..., x_{n}\}##.
I'll wrote ##[]## to talk about the class of an element in ##M = P_{2}(\mathbb{R})##.
By connexity I get : ##H^{0}(M) = \mathbb{R}## and by dimension I get ##H^{p}(M) = \{0\}## for ## p > 2##.
Here is what I tried to : let's focus on the first sum :
If ##g = 1## I consider the 2 opens ##U = P_{2}(\mathbb{R}) - [((1, 0, 0)]## : it has the same homotopy as ##P_{1}(\mathbb{R}) \simeq \mathbb{S}_{1}## so the same de Rham cohomology. I consider ##V = \{ [(x, y, z)] \in P^{2}(\mathbb{R}) | x \neq 0\}## which as the same homotopy as ##\mathbb{R}^{2}##. We have that ##U \cup V = M## and ##U \cap V## has the same cohomology than a plan miness a point so the cohomology
than a circle.
Thanks to Mayer-Vietoris, I got the following exact sequences :
##0 \mapsto \mathbb{R} \mapsto \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R} \mapsto H^{1}(M) \mapsto \mathbb{R} \mapsto \mathbb{R} \mapsto H^{2}(M) \mapsto
0 ~ (1)##
The 3th ##\mapsto## is the application ##(x, y) \mapsto x - y## which is surjective. By exactitude we get that ##H^{1}(M) \hookrightarrow \mathbb{R}## so it's ##\mathbb{R}## or ##\{0\}##.
I also know that if ##0 \mapsto E_{1} \mapsto ... \mapsto E_{n} \mapsto 0## is an exacte seqeunces between finite dimension spaces I got ##\sum_{i = 0}^{n} (-1)^{i}dim(E_{i})## but I have to unkown dimension in by sequence ##(1)##.
So how solve this? Whatever the open ##U, V## I take, I always got twoo unkown.
Feel free to move the thread in homework if you think I'll get more answer.
The problem comes from here : http://www.math.u-psud.fr/~paulin/notescours/cours_geodiff.pdf : page 246 exercice 141.
Notice that the method the author use above to look for the de Rham cohomology of a connected sum of thorus is such that he has twoo unknown dimension. But he claims he compute ##H^{2}## with another method or by knowing the morphism (but if I look Mayer-Vietoris theorem proof, we only know the morphism between ##H(M), H(U) \times H(V)##).
Could you help me please?
I wish you a good day.