- #1

- 2

- 0

My class is doing an optimization problem, The shape of a can. I have attached a copy of the problem.

I have done problems 1 and 2 and now am stuck on problem 3.

What I've tried so far is to differentiate the function 4sqrt3 r^2 +2Pi rh +k(4Pir +h) with respect to r where h=v/Pir^2. I know that to optimize the function I have to set the derivative equal to zero and solve to find min/max but I have to show that when the expression is minimized it is equal to the third root of volume over the constant k. What baffles me is that all the variables V, h and r are in the minimized expression. How did that happen?

I have done problems 1 and 2 and now am stuck on problem 3.

What I've tried so far is to differentiate the function 4sqrt3 r^2 +2Pi rh +k(4Pir +h) with respect to r where h=v/Pir^2. I know that to optimize the function I have to set the derivative equal to zero and solve to find min/max but I have to show that when the expression is minimized it is equal to the third root of volume over the constant k. What baffles me is that all the variables V, h and r are in the minimized expression. How did that happen?