Given that D²f(x) = g(x), one form that eliminate the second derivate is integrating the equation: ∫∫D²f(x)dx² = ∫∫g(x)dx². But, and if I try so:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\\ \sqrt{D^2f(x)}=\sqrt{g(x)} \\ D\sqrt{f(x)}=\sqrt{g(x)} \\ PD\sqrt{f(x)}=P\sqrt{g(x)} \\ \sqrt{f(x)}=P\sqrt{g(x)} \\ f(x)=[P\sqrt{g(x)}]^2 \\ f(x)=[\int \sqrt{g(x)}dx]^2[/tex]

Is it works?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Calculus with D operator

**Physics Forums | Science Articles, Homework Help, Discussion**