I think about on this and found a result, [tex]e^{i\pi k}=e^{-i\pi k}=-1\Rightarrow i\pi k=ln(-1)[/tex](adsbygoogle = window.adsbygoogle || []).push({});

a>1 and k=1,2,3...

[tex]y=(-a)^{i\alpha }\Rightarrow lny=i\alpha ln(-a)=i\alpha (ln(-1)+lna)=i\alpha (i\pi k+lna)\Rightarrow y=e^{-\alpha \pi k}e^{i\alpha \ln{a}}[/tex]

Then

[tex]\alpha \ln{a}=-\pi \Rightarrow \alpha =\frac{-\pi }{\ln{a}}\Rightarrow e^{-i\pi }e^{\frac{{\pi }^2 k}{\ln{a}}}=-e^{\frac{{\pi }^2 k}{\ln{a}}} [/tex]

If I choose k as infinity, I get a exponential expression as negative infinity.

Is it right? Please explain to me. Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Can a^x be negative infinity

**Physics Forums | Science Articles, Homework Help, Discussion**