- #1

Slimy0233

- 165

- 48

or Are all naturally occurring crystals with periodic arrangement of lattices Bravais lattices?

From two days, I have been trying to understand Bravais lattices and what it's importance is and after a lot of research, I came to know that they are a periodic arrangement of lattice points with translational symmetry. Now, I want to write notes and I don't know why there are only 5 Bravais lattices in 2d and 14 in 3d (like WHY?) and I am of the believe that the actual derivation is pretty hard and unnecessary. Now, I have one doubt,

Because if they are, I can finally stop looking for answer and write, it has been observed that all possible periodic lattice arrangements can be expressed as Bravais lattices and close the chapter on this on and move on to the next topic.

Also, I believe this 10 year answer is right, but I just wanted to ask you all with the context I am in.

From two days, I have been trying to understand Bravais lattices and what it's importance is and after a lot of research, I came to know that they are a periodic arrangement of lattice points with translational symmetry. Now, I want to write notes and I don't know why there are only 5 Bravais lattices in 2d and 14 in 3d (like WHY?) and I am of the believe that the actual derivation is pretty hard and unnecessary. Now, I have one doubt,

**Can all possible periodic arrangements of lattices be arranged as a Bravais lattice?**Because if they are, I can finally stop looking for answer and write, it has been observed that all possible periodic lattice arrangements can be expressed as Bravais lattices and close the chapter on this on and move on to the next topic.

Also, I believe this 10 year answer is right, but I just wanted to ask you all with the context I am in.

Last edited by a moderator: