(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

a) Let [itex]H[/itex] be a normal subgroup of [itex]G[/itex]. If the index of [itex]H[/itex] in [itex]G[/itex] is [itex]n[/itex], show that [itex]y^n \in H[/itex] for all [itex]y \in G[/itex].

b) Let [itex]\varphi : G \rightarrow G'[/itex] be a homomorphism and suppose that [itex]x \in G[/itex] has order [itex]n[/itex]. Prove that the order of [itex]\varphi(x)[/itex] (in the group [itex]G'[/itex]) divides [itex]n[/itex]. (Suggestion: Use the Division Algorithm.)

c) Let [itex]\varphi : \mathbb{Z}_n \rightarrow \mathbb{Z}_m[/itex] be a homomorphism. Show that [itex]\varphi[/itex] has the form [itex]\varphi([x]) = [qx][/itex] for some 0 ≤ [itex]q[/itex] ≤ [itex]m[/itex] - 1. Then, by means of a counterexample, show that not every mapping from [itex]\mathbb{Z}_n[/itex] to [itex]\mathbb{Z}_m[/itex] of the form

[itex]\varphi([x]) = [qx][/itex] where 0 ≤ [itex]q[/itex] ≤ [itex]m[/itex] - 1 need be a homomorphism.

2. Relevant equations

For normal subset H:

[itex]yH=Hy[/itex] (right coset = left coset) for all [itex]y \in G[/itex], and they partition [itex]G[/itex].

[itex]yhy^{-1} \in H[/itex] for all [itex]h \in H[/itex], [itex]y \in G[/itex].

For homomorphism [itex]\varphi : G \rightarrow G'[/itex]:

[itex]\varphi(ab) = \varphi(a) \varphi(b)[/itex] for all [itex]a,b \in G[/itex].

3. The attempt at a solution

b):

[itex]x^n = e; n \in \mathbb{P}[/itex]

[itex](\varphi(x))^{qn+r} = e; q,r \in \mathbb{Z},[/itex] 0≤ r < n.

[itex](\varphi(x))^{qn}(\varphi(x))^{r}=e[/itex]

[itex]\varphi(x^{qn})\varphi(x^r)=e[/itex]

[itex]\varphi(e)\varphi(x^r)=e[/itex]

[itex]\varphi(x^r)=e[/itex]

....? Not sure where to go from here.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Can anyone help me with these abstract algebra proofs?

**Physics Forums | Science Articles, Homework Help, Discussion**