Hope I have posted this in the right section, this question is half differential equation and half finite difference method. The equation I have is a form of the Lucas Washburn equation, which is concerned with capillary rise:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\rho\left[\left(z+\lambda\right)z''_{tt}+(z'_{t})^{2}\right]+Vzz'_{t}+\rho g z=F[/tex]

[tex]\lambda,\rho[/tex], F & V are constants,initial conditions are z(0)=0, and z'(0)=0

The Equation in another form:

[tex]z\ddot{z}+\dot{z}^{2}=az\dot{z}+bz+c[/tex]

Am I correct in thinking that this differential equation has no analytical solution? In light of that I want to try and solve for z(t) numerically using a finite difference method but am unsure about how to reform this equation into a from I can use. Any thoughts or suggestions would be greatly appreciated.

Teller

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Can it be solved: 2nd order non-linear diff. equation

**Physics Forums | Science Articles, Homework Help, Discussion**