In LQG the canonical variables are a SU(2) connection A, and the "electric" field E, such that they form a canonical pair, i.e., {A,E}=1. But the constraints that generates diffeomorphisms contains also the variable K (extrinsic curvature). My question is, is this variable an independent one? if yes, which one is its canonically conjugate momentum? How can I compute the algebra of constraints with K? Is this a composed variable in the sense that K=K[A,E]?(adsbygoogle = window.adsbygoogle || []).push({});

I know this questions seems to be out of topic because is a text book question, but anyway, if someone can help, I'll be grateful.

Z.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Canonical variables in LQG

**Physics Forums | Science Articles, Homework Help, Discussion**