# Car in a curve

1. Jan 29, 2007

### Northstar

Hi all, I can't figure out what the next step is on a problem. The problem is:
A car moving at a speed of 35 m/s enters a curve that describes a quarter turn of radius 130 m. The driver gently applies the brakes, giving a constant tangential deceleration of magnitude 1.2 m/s^2. Just before emerging from the turn, what is the magnitude of the car's acceleration?

I found that Vf = 27.1 and that the centripetal acceleration was 5.65 m/s^2 (I am not positive these are correct, however). I am stuck on what I do next in the question. Any help would be greatly appreciated.

2. Jan 29, 2007

### Staff: Mentor

The total acceleration will be the vector sum of the centripital acceleration (which acts in which direction?), and the tangential acceleration (which acts in the direction of the tangent to the circle). To calculate the "magnitude" of the car's acceleration, do the vector addition of the two components, and then take the magnitude of that resultant vector.

3. Jan 29, 2007

### Northstar

Awesome, thanks!