Cardinal Arithmetic: Finite Set X, #X+1

  • Thread starter HMPARTICLE
  • Start date
  • Tags
    Arithmetic
In summary: Therefore, we have shown that for a finite set X with cardinality n, if x is not an element of X, then X U {x} has cardinality n + 1, denoted by #(X U {x}) = #(X) + 1. This is because there exists a bijection from X to the first n integers, and by defining a bijection g from X U {x} to the first n+1 integers, we can see that the two sets have equal cardinality. Thus, we have proven that adding an extra element to a finite set increases its cardinality by 1.
  • #36
Because y is an element of the set X U {x}
 
Physics news on Phys.org
  • #37
No. It is because if ##m\le n##, so ##m\in S_n##, you have there is ##y\in X## such that ##f(y)=m## because ##f## is a bijection between ##X## and ##S_n##. And by the definition of g, if ##y\in X## then ##g(y)=f(y)##. That is why ##g(y) = m##.

This should complete the argument that ##g## is onto ##S_{n+1}##. Now, since we have been through it and it isn't really a homework problem because you aren't actually taking a class, I'm going to stretch the PF rules and show you how you should write it up. We have called$$
S_n = \{ i\in N: i\le n\}$$You are given a bijection ##f## from a set ##X## to ##S_n##. If ##x## is not an element of ##x##, you want to demonstrate a bijection ##g## from ##X\cup \{x\}## to ##S_{n+1}##.

Our proposed bijection is$$
g(y)=\left\{\begin{array}{rl}
f(y),& y\in X\\
n+1,& y=x
\end{array}\right.$$
Claim: ##g## is onto ##S_{n+1}##
Proof: Suppose ##m\in S_{n+1}##. If ##m = n+1## then ##g(x) = n+1=m##. If ##m < n+1## then ##m \in S_n## so, since ##f## is a bijection between ##X## and ##S_n##,(hence onto), there is a ##y\in X## such that ##f(y) = m##. Since ##y\in X## then ##g(y) = f(y)## by the definition of ##g##, so ##g(y)=m##.
So in each case, ##m=n+1## or ##m\le n## we have found a ##y## such that ##g(y) = m##.

Now we must show that ##g## is 1-1. You do it. Write down carefully what you have to prove and argue it.
 
Last edited:
  • #38
Thank you ever so much.

The first line
If m = n+1 then g(x) = m+1. I find this a little confusing. if m is some element of ##S_{n+1}## and m = n+1, i get this part... but then to say that g(x) = m+1.
This may sound really stupid, but to me, I'm not quite seeing it.

Claim: ##g## is a 1-1 function
Proof: Let ##m \in S_{n+1} ## and ##y_1, y_2 \in X \cup \{x\} ##. suppose that ##g(y_1) = g(y_2) ##. Then we have two cases to deal with, if ## m < n ## then by the definition of ##g##, ##g(y_1) = g(y_2) ## becomes ##f(y_1) = f(y_2) ##, but ##f## is a bijection, so it follows that ##y_1=y_2##, in the second case, if ## m = n +1 ## then ##g(y_1) = g(y_2)## can only occur if ##y_1 = y_2 = x ##, and##g(x) = m+1##. In either case, g maps different elements to different elements. It follows that ##g## is 1-1
 
Last edited:
  • #39
HMPARTICLE said:
Thank you ever so much.

The first line
If m = n+1 then g(x) = m+1. I find this a little confusing. if m is some element of ##S_{n+1}## and m = n+1, i get this part... but then to say that g(x) = m+1.
This may sound really stupid, but to me, I'm not quite seeing it.

Not stupid and you shouldn't see it. That was just a typo. I fixed it to ##g(x) = n+1##.

Claim: ##g## is a 1-1 function
Proof: Let ##m \in S_{n+1} ## and ##y_1, y_2 \in X \cup \{x\} ##. suppose that ##g(y_1) = g(y_2) \color{red}{=m}##. Then we have two cases to deal with, if ## \color{red}{m < n} ## then by the definition of ##g##, ##g(y_1) = g(y_2) ## becomes ##f(y_1) = f(y_2) ##, but ##f## is a bijection, so it follows that ##y_1=y_2##, in the second case, if ## m = n +1 ## then ##g(y_1) = g(y_2)## can only occur if ##y_1 = y_2 = x ##, and ##g(x) = m+1##. In either case, g maps different elements to different elements. It follows that ##g## is 1-1

Pretty good. You have to say what ##m## is, which I fixed, and is the inequality in red should read ##m\le n##.

Have a nice holiday.
 
  • Like
Likes HMPARTICLE
  • #40
Many thanks again, you also! :)
 

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
495
  • Calculus and Beyond Homework Help
Replies
3
Views
507
  • Calculus and Beyond Homework Help
Replies
34
Views
2K
  • Calculus and Beyond Homework Help
Replies
5
Views
1K
  • Calculus and Beyond Homework Help
Replies
20
Views
2K
  • Calculus and Beyond Homework Help
Replies
14
Views
513
  • Calculus and Beyond Homework Help
Replies
7
Views
255
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
4
Views
490
Back
Top