I know that if the series of (a)n (n is a subscript) converges, then the lim (a)n=0. How can I show that if the series of (a)n converges, then lim n(a)n=0?(adsbygoogle = window.adsbygoogle || []).push({});

Or rather if a1 +a2 +a3 +...+an=0, then lim n*(a)n=0?

Not sure how to show this, but I know the proof involves the cauchy criterion for series. Help anyone?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Cauchy Criterion for Series

**Physics Forums | Science Articles, Homework Help, Discussion**