- #1
- 243
- 21
I was looking at the proof of the residue theorem on MathWorld: http://mathworld.wolfram.com/ResidueTheorem.html
and got stucked on the 3rd relation.
I don't understand why the Cauchy integral theorem requires that the first term vanishes.
From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0. But in this case, the contour [tex]\gamma[/tex] encloses [tex]z_{0}[/tex] which is a pole of [tex](z-z_{0})^{n}[/tex] for [tex]n \in \{-\infty,...,-2\}[/tex]
and got stucked on the 3rd relation.
I don't understand why the Cauchy integral theorem requires that the first term vanishes.
From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0. But in this case, the contour [tex]\gamma[/tex] encloses [tex]z_{0}[/tex] which is a pole of [tex](z-z_{0})^{n}[/tex] for [tex]n \in \{-\infty,...,-2\}[/tex]