Lets say we have: [tex] (a_{1}b_{1} + a_{2}b_{2} + ... + a_{n}b_{n})^{2} \leq (a_{1}^{2} + a_{2}^{2} + ... + a_{n}^{2})(b_{1}^{2} + b_{2}^{2} + ... + b_{n}^{2}) [/tex].(adsbygoogle = window.adsbygoogle || []).push({});

Let [tex] A = a_{1}^{2} + a_{2}^{2} + ... + a_{n}^{2} , B = a_{1}b_{1} + a_{2}b_{2} + ... + a_{n}b_{n}, C = b_{1}^{2} + b_{2}^{2} + ... + b_{n}^{2} [/tex]. Thus we have [tex] AC \geq B^{2} [/tex]. From [tex] 0\leq (a_{1} + tb_{1})^{2} + (a_{2} + tb_{2})^{2} + ... + (a_{n} + tb_{n})^{2} [/tex] where [tex] t [/tex] is any real number, we obtain [tex] 0 \leq A + 2Bt + Ct^{2} [/tex]. Completing the square, we obtain [tex] Ct^{2} + 2Bt + A = C(t + \frac{B}{C})^{2} + (A - \frac{B^{2}}{C}) [/tex]. From this step, how do we obtain [tex] 0 \leq A - \frac{2B^{2}}{C} + \frac{B^{2}}{C} = \frac{AC-B^{2}}{C} [/tex], implying that [tex] AC - B^{2} \geq 0 [/tex]?

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Cauchy Schwarz Inequality

**Physics Forums | Science Articles, Homework Help, Discussion**