Can Causality and Operators Explain the Limitations of Quantum Field Theory?

In summary, Heisenberg's uncertainty principle holds only when the two observables involved are canonical conjugates.
  • #1
center o bass
560
2
Hi. I'm reading David Tong's notes (Causality at page 36: http://www.damtp.cam.ac.uk/user/tong/qft/two.pdf ) on QFT and I'm currently trying to understand the causality requirement that

[tex][O_1(x), O_2(y)] = 0 \ \ \forall \ \ (x-y)^2 < 0.[/tex]

For two operators O1 and O2. He then states that this ensures that a measurement at x can not affect a measurement at y when x and y are not causally connected.

I know that in classical relativity, a spacelike separation between events, imply that the event at the first location could not have been the cause of the event at the second location because it would require a signal to go faster than the speed of light.
However exactly how this statement is related to measurements and operators in QFT is not clear to me. Could someone enlighten me?
 
Last edited:
Physics news on Phys.org
  • #2
The concept behind this requirement is that if two observables do not commute then they follow the Heisenber's indetermination principle. Hypothetically speaking you could use this kind of correlation in order to transmit informations from x to y. So if x-y is a spacelike vector then you have to require the commutation of the two operators.
I hope I was clear and, obviously, not to be wrong! :biggrin:
 
  • #3
Einj said:
The concept behind this requirement is that if two observables do not commute then they follow the Heisenber's indetermination principle. Hypothetically speaking you could use this kind of correlation in order to transmit informations from x to y. So if x-y is a spacelike vector then you have to require the commutation of the two operators.
I hope I was clear and, obviously, not to be wrong! :biggrin:

So since they obey Heisenberg's uncertainty relation which states that

[tex]\Delta O_1(x) \Delta O_2 (y) [/tex]

is less than or equal to some function of the commutator between the two, one could in principle make O1 sharp (by measuring it?) at the event x, and then O2 would have to become very indeterminate at y, such that you have in some sense sent a signal to y that you measured O1 at x? Am I right?
 
  • #4
That's right. At least that's the way I understood that too. Maybe there are other ways of using indetermination's relation to transmit information but I don't know it for sure.
 
  • #5
The re is an excelent explanation of this in the first 200 pages of weinberg qft. Much more profound than HUP. I really recommend to take a look at that book.
 
  • #6
Which volume?
 
  • #7
Yes, it seems to take Weinberg 200 pages to explain anything. He would not do well on Twitter. :smile:

In fact he requires the vanishing of the commutator/anticommutator of the fields not to guarantee causality but rather to guarantee Lorentz invariance.
 
  • #8
Do you think is my previous interpretation wrong or is just the problem deeper? I'd like to know if my current understanding is correct.
 
  • #9
I think the interpretation of [O1(x), O2(y)] = 0 where x - y is spacelike and O1, O2 are any two observables is clear. If this were not the case, a measurement at point x would influence the outcome of a measurejment at point y.

Weinberg just wants to skirt the details of what constitutes an observable and what constitutes a measurement, especially for spinor fields, and so he derives it an easier way, from Lorentz invariance.
 
  • #10
Understood. Thank you.
 
  • #11
I do not know if it is not enough. I found more satisfying the explanation of Weinberg. In fact what I don't like of the usual explanation is that, although

[O(x);O(y)] = 0 for x-y spacelike, (1)

One also finds that

<0|O(x);O(y)|0> ≠ 0 for creation operators. (2)

So there is some apparent incongruence between the first equality and the the second because in the first eq one interpretates that what happens in x does not affect what happens in y, but in the second eq one finds that what happens in "x" kind of affect what happens in "y".

In fact, what I never understood and perhaps some of you can enlight me is why it is usually said from (1) that O(x) can't affect the probability distribution of O(y) (ensuring in this way the locality property of any theory). To me, it only says that we can know both the value of O(x) and O(y) which is weaker I think. Am I loosing something?

Thanks!
 
  • #12
[O(x);O(y)] = 0 for x-y spacelike, (1)
One also finds that
<0|O(x);O(y)|0> ≠ 0 for creation operators. (2)
(1) holds only for observables. In (2), creation operators are not observables and so their commutator is not required to vanish. What saves causality is that the field operator is constructed from both particle and antiparticle. One term is creation, the other term annihilation, and the nonzero commutator from the first term cancels the commutator from the other.

The Heisenberg uncertainty principle, by the way, holds only in the special case that the two operators involved are canonical conjugates of each other. Thus it holds for [x, p] = iħ, but not for Jx, Jy which also don't commute.
 
  • #13
the_pulp said:
The re is an excelent explanation of this in the first 200 pages of weinberg qft. Much more profound than HUP. I really recommend to take a look at that book.

Thanks for all the anwers! I will check out Weinberg's book for sure. However I've heard it is not suitable for an introduction to QFT. What do you think?
 
  • #14
center o bass said:
Thanks for all the anwers! I will check out Weinberg's book for sure. However I've heard it is not suitable for an introduction to QFT. What do you think?

It most certainly depends on the level of math you possess. If you come from QM learned from the 2-volume set of Galindo & Pascual, then Weinberg Vol.1 is the proper exposure to QFT. If you come from Griffiths, Liboff & perhaps with a touch from Sakurai, then a text on QFT by Ryder or Peskin & Schroeder would be appropriate.
 

1. What is causality?

Causality is the relationship between cause and effect, where the cause is the action or event that leads to a certain outcome or effect. It is the principle that every event has a cause and that the cause comes before the effect.

2. How can causality be established in a scientific study?

Causality can be established in a scientific study through the use of controlled experiments, where one variable is manipulated and the effect on another variable is observed. This allows researchers to determine if there is a causal relationship between the two variables.

3. What is an operator in causality?

In causality, an operator is a mathematical or logical symbol that represents a specific relationship between variables. It is used to describe the cause-and-effect relationship between variables in a scientific study.

4. How is causality different from correlation?

Causality and correlation are often confused, but they are not the same. While causality refers to a direct cause-and-effect relationship, correlation only indicates a relationship between two variables, but does not necessarily mean that one causes the other.

5. Can causality be proven beyond a doubt?

In science, causality can never be proven beyond a doubt. However, through careful experimentation and rigorous analysis of data, scientists can establish strong evidence for a causal relationship between variables. This evidence can be used to support theories and make predictions, but it is always subject to further testing and revision.

Similar threads

  • Quantum Physics
Replies
9
Views
1K
  • Quantum Physics
Replies
1
Views
1K
  • Special and General Relativity
Replies
16
Views
2K
  • Quantum Interpretations and Foundations
6
Replies
175
Views
6K
  • Quantum Physics
Replies
2
Views
3K
Replies
3
Views
401
  • Advanced Physics Homework Help
Replies
0
Views
122
Replies
5
Views
2K
  • Quantum Physics
3
Replies
87
Views
5K
Back
Top