(adsbygoogle = window.adsbygoogle || []).push({}); Here is the problem:

A region is defined as being bounded by the parabola [tex]x = y^2[/tex] and the line [tex]y = x - 2[/tex].

The density of this region is [tex]\delta = 3x[/tex].

a) Find the center of mass.

b) Find the moment of inertia about the y-axis.

c) Find the radius of gyration about the y-axis.

Here is what I have:

[tex]M = \int_{-1}^{2}\int_{y^2}^{y + 2}\;3x\;dx\;dy = \frac{108}{5}[/tex]

[tex]M_{x} = \int_{-1}^{2}\int_{y^2}^{y + 2} 3xy\;dx\;dy = \frac{135}{8}[/tex]

[tex]M_{y} = \int_{-1}^{2}\int_{y^2}^{y + 2} 3x^2\;dx\;dy = \frac{1269}{28}[/tex]

[tex]\bar{x} = \frac{\frac{1269}{28}}{\frac{108}{5}} = \frac{235}{112}\;\;and\;\;\bar{y} = \frac{\frac{135}{8}}{\frac{108}{5}} = \frac{25}{32}[/tex]

[tex]I_{y} = \int_{-1}^{2}\int_{y^2}^{y + 2} x^2 \left(3x\right)\;dx\;dy = 110.7[/tex]

[tex]R_{y} = \sqrt{\frac{110.7}{\frac{108}{5}}} \approx 2.26[/tex]

Does this look correct?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Center of mass, moment of inertia for x = y^2 and y = x - 2 with density d = 3x

**Physics Forums | Science Articles, Homework Help, Discussion**