Centroid of a triangle proof

  • Thread starter phospho
  • Start date
  • #1
phospho
251
0
We got given the formula for finding the centroid of a triangle which was to [itex] (\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}) [/itex] but we the teacher said he didn't have time to show the proof, however I'm still curious. Could anyone possible hint on how I could go about to prove this? My maths experience is of A level Maths & Further maths, or high school senior (AP Calc I think).
 

Answers and Replies

  • #2
voko
6,054
391
Take a triangle and consider the median from one of vertices. This median divides the triangle into two triangles. Can you see they have the same area? That means the centroid must be on the median. By the same token, we can see this must hold for the other medians. All the medians intersect in one point. This, then, must be the centroid.
 
  • #3
phospho
251
0
Take a triangle and consider the median from one of vertices. This median divides the triangle into two triangles. Can you see they have the same area? That means the centroid must be on the median. By the same token, we can see this must hold for the other medians. All the medians intersect in one point. This, then, must be the centroid.

I've done it the way you mentioned but I don't see how that proves the mean of the 3 vertices is equal to the center of mass.

thanks
 
  • #4
voko
6,054
391
Let's denote the vertices by A, B, C. The equation of the median from vertex A is given by ## z = A + (\vec{AB} + \vec{AC})s/2 ##, where s is the parameter of the line (its length). Can you see why this is true? Likewise, for the median from B, we have ## z = B + (\vec{BA} + \vec{BC})t/2 ##. Where the medians intersect, these must be equal, so we have ## A + (\vec{AB} + \vec{AC})s/2 = B + (\vec{BA} + \vec{BC})t/2 ##. If we express this in terms of the coordinates, we have: [tex]
\begin{cases}
x_A + (x_B - x_A + x_C - x_A)s/2 = x_B + (x_A - x_B + x_C - x_B)t/2
\\y_A + (y_B - y_A + y_C - y_A)s/2 = y_B + (y_A - y_B + y_C - y_B)t/2
\end{cases}
[/tex]And this is solved with [tex]\begin{cases}s = 2/3 \\ t = 2/3\end{cases}[/tex](Show it.)

This means that the centroid lies at 2/3 along any median. Taking one of the equations of the medians, and substituting s or t in it, we obtain the coordinates of the centroid: [tex] (\frac {x_A + x_B + x_C} 3, \frac { y_A + y_B + y_C } 3) [/tex]
 

Suggested for: Centroid of a triangle proof

  • Last Post
Replies
1
Views
543
  • Last Post
Replies
1
Views
24K
  • Last Post
Replies
7
Views
5K
  • Last Post
Replies
2
Views
2K
Replies
12
Views
95K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
4
Views
446
  • Last Post
Replies
20
Views
2K
  • Last Post
Replies
4
Views
20K
Top