(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find [tex] \frac{\partial z}{\partial u} [/tex] and [tex] \frac{\partial z}{\partial v} [/tex] using the chain rule.

[tex] z = \arctan(\frac{x}{y}) , x=u^2+v^2 , y=u^2-v^2 [/tex]

2. Relevant equations

3. The attempt at a solution

[tex] \frac{\partial z}{\partial u} = \frac{4uv^2}{v^4 - 2u^2v^2 + u^4} * \frac{1}{1+((u^2+v^2)/(u^2-v^2))^2)} [/tex]

[tex] \frac{\partial z}{\partial v} = \frac{4u^2v}{v^4 - 2u^2v^2 + u^4} * \frac{1}{(1+((u^2+v^2)/(u^2-v^2))^2)} [/tex]

why is my answer wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Chain rule

**Physics Forums | Science Articles, Homework Help, Discussion**