- #1

- 102

- 0

**u = u(T,v)**how to use the chain rule to write how

**u**changes with respect to

**T & v**.

Please specify the steps involved.

i understand chain rule as [itex]\frac{du}{dx}[/itex] = [itex]\frac{du}{dy}[/itex] [itex]\frac{dy}{dx}[/itex]

- Thread starter sphyics
- Start date

- #1

- 102

- 0

Please specify the steps involved.

i understand chain rule as [itex]\frac{du}{dx}[/itex] = [itex]\frac{du}{dy}[/itex] [itex]\frac{dy}{dx}[/itex]

- #2

mathman

Science Advisor

- 7,867

- 450

du/dx = (∂u/∂T)(dT/dx) + (∂u/∂v)(dv/dx)

- #3

- 102

- 0

very much thanks for ur quick response :)

du/dx = (∂u/∂T)(dT/dx) + (∂u/∂v)(dv/dx)

how does the symbol

- #4

- 390

- 1

For example if I have

[tex] F = x^2 + 2xy + \frac{x}{y} [/tex]

Then

[tex] \frac{\partial F}{\partial x} = 2x + 2y + \frac{1}{y} [/tex]

Can you find [itex] \frac{\partial F}{\partial y} [/itex]? :)

- #5

- 102

- 0

= 2x - x/y[itex]

Can you find [itex] \frac{\partial F}{\partial y} [/itex]? :)

i think thats the right answer :)

- #6

- 390

- 1

I think so too :)

- #7

- 102

- 0

Appreciate ur help :)