1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Change in chemical potential

  1. Nov 18, 2005 #1
    Consider a solution of particles of type A and B with the following Gibbs potential
    [tex]
    G(P,T,n_A,n_B)=n_A g_A(P,T) + n_B g_B(P,T)+ (1/2)\lambda_{AA}n_A^2/n + (1/2)\lambda_{BB}n_B^2/n + \lambda_{AB}n_A n_B/n + n_A RT \ln(x_A) + n_B RT \ln(x_B)
    [/tex]
    where the [itex]n_i[/itex]'s are the number of moles with [itex]x_i=n_i/n[/itex] and [itex]g_i[/itex] are the molar Gibbs potential of each type of particle [itex]i=A,B[/itex]. Also [itex]n_A + n_B = n[/itex] and the [itex]\lambda_{ij}[/itex] are positive constants.
    a) If we add [itex]\Delta n_B[/itex] moles of B keeping pressure and temperature constant, calculate the change in in the chemical potential of A.
    The chemical potential of A is
    [tex]
    \mu_A = \left ( \frac{\partial G}{\partial n_A} \right )_{P,T,n_A} = g_A + \lambda_{AA} n_A/n + \lambda_{AB}n_B/n + RT(1 + \ln(x_A))
    [/tex]
    so changing [itex]n_B[/itex] to [itex]n_B+\Delta n_B[/itex] only changes [itex]\mu_A[/itex] by an amount [itex]\lambda_{AB}\Delta n_B/n[/itex].
    Is this right or I'm getting the whole thing wrong?

    Edited:

    I found the trick [itex]n[/itex] as actually a depence in [itex]n_A[/itex] so you need to take account of this when you differentiate [itex]G[/itex] with respect to [itex]n_A[/itex]
     
    Last edited: Nov 19, 2005
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?