(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Recall that the matrix for [tex]T: R^{2} \rightarrow R^{2}[/tex] defined by rotation through an angle [tex]\theta[/tex] with respect to the standard basis for [tex]R^{2}[/tex] is

[tex]\[A =\begin{array}{cc}cos \theta & -sin \theta \\sin \theta & cos\theta \\\end{array}\]\right][/tex]

a) What is the matrix of T with respect to the basis (2,1),(1,-2)?

2. Relevant equations

3. The attempt at a solution

So, here's the deal, I missed this particular lecture last week. I'm trying to teach myself this concept of changing basis. Here's one of my homework problems. Can you please check it?

alpha = standard basis, beta = new basis

I(1,0) = a(2,1) + b(1,-2) --> a = .4, b = .2

I(0,1) = a(2,1) + b(1,-2) --> a = .2, b = -.4

[tex]\[[I^{\beta}_{\alpha}] = \begin{array}{cc} .4 & .2 \\ .2 & -.4 \\ \end{array}[/tex]

[tex]\[[I^{\beta}_{\alpha}]^{-1} = (\frac{1}{.4(-.4)-.2(.2)})\begin{array}{cc} -.4 & -.2 \\ -.2 & .4 \\ \end{array}

= -5(\begin{array}{cc} -.4 & -.2 \\ -.2 & .4 \\ \end{array})

= \begin{array}{cc} 2 & 1 \\ 1 & -2 \\ \end{array}[/tex]

The new transformation matrix should be [tex][I^{\beta}_{\alpha}]^{-1}A[I^{\beta}_{\alpha}] = (\begin{array}{cc} 2 & 1 \\ 1 & -2 \\ \end{array})(\begin{array}{cc}cos \theta & -sin \theta \\sin \theta & cos\theta \\\end{array})(\begin{array}{cc} .4 & .2 \\ .2 & -.4 \\ \end{array}) = \begin{array}{cc}cos \theta & sin \theta \\ -sin \theta & cos \theta[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Change of basis

**Physics Forums | Science Articles, Homework Help, Discussion**