Hi,(adsbygoogle = window.adsbygoogle || []).push({});

Ok, I have notice that for several finite groups the following situation occurs... I will use the non-abelian group of order 27 to illustrate the point I'm making:

The group has 11 charachers, 9 of which are linear.

The group has derived subgroup G' (= Z(G) the centre of the group...irrelevant!) has 3 elements, G/G' is isomorphic to C_3 x C_3

If the non linear characters are called Chi_10 and Chi_11, why are they equal to zero on G/G'?

Another example of where this occurs would be A_4, which has 3 linear characters, and one non-llinear, and the derived subgroup= V_4 so Chi_4, the non-linear character = 0 on the conjugacy classes (123) and (132)

Thank You very much!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Character zero

Loading...

Similar Threads for Character zero |
---|

I Getting a matrix into row-echelon form, with zero-value pivots |

**Physics Forums | Science Articles, Homework Help, Discussion**