1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Check work on linear transformation problem

  1. Oct 16, 2005 #1
    check work plz on linear transformation problem

    The problem is to find a standard matrix of T.
    [tex]T:\mathbb{R}^3\rightarrow\mathbb{R}^2, T(\vec{e}_1) = (1,3), T(\vec{e}_2) = (4,-7), T(\vec{e}_3) = (-5,4)[/tex]
    where e_1, e_2, and e_3 are the columns of the 3x3 identity matrix.
    So here's what I did:
    Find A for [itex]T(\vec{x})=A\vec{x}[/itex]

    [tex]\vec{x}=I_3\vec{x}=\left[ \vec{e}_1 \; \vec{e}_2 \; \vec{e}_3 \right] \vec{x} = x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3[/tex]

    [tex]T(\vec{x}) = T(x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3) = x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2) + x_3 T(\vec{e}_3)[/tex]

    [tex]\left[ T(\vec{e}_1) \; T(\vec{e}_2) \; T(\vec{e}_3)\right]\vec{x} = A\vec{x} [/tex]

    [tex] A = \left[ T(\vec{e}_1) \; T(\vec{e}_2) \; T(\vec{e}_3)\right] = [/tex]
    (well basically i screwed up teh tex for this but its a 2x3 matrix with top row 1,4,-5 and bottom row 3,-7,4)
    Note: a lot of this might be unnecessary, but my main goal is that I want to be sure that I am understanding this correctly.
    Last edited: Oct 16, 2005
  2. jcsd
  3. Oct 16, 2005 #2
    I think I finally understand linear transformation. Can someone check this one also?

    [itex]T:\mathbb{R}^2\rightarrow\mathbb{R}^2[/itex] first reflects points through the horizontal [itex]x_1[/itex]-axis and then reflects points over the line [itex] x_2=x_1[/itex]

    what I did:

    Find A for [itex]T(\vec{x})=A\vec{x}[/itex]

    Let [itex]T_1[/itex] be the first reflection.
    [tex]\vec{e}_1 = (1,0), \vec{e}_2 = (0,1)[/tex]
    [tex]T_1(\vec{e}_1) = (1,0), T_1(\vec{e}_2) = (0,-1)[/tex]

    Let [itex]T_2[/itex] be the second reflection.
    [tex]T(\vec{e}_1) = T_2(T_1(\vec{e}_1)) = (0,1), T(\vec{e}_2) = T_2(T_1(\vec{e}_2)) = (-1,0) [/tex]
    [tex]A = [T(\vec{e}_1) \; T(\vec{e}_2)] = \left[
    0 & 1\\
    -1 & 0
    \right] [/tex]
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook