Chem, Gases

  • Thread starter teleport
  • Start date
  • #1
240
0
Hi, I have been struggling a little with this question.

Scuba divers breathe a mixture of O2(g) and He(g) to avoid "the bends, a condition caused by nitrogen in the blood. If 65.0g O2(g) and 2.00g He(g) are placed in a 5.0L tank at 25oC, calculate:

If the average human takes 15 breaths per minute, and breathes in 0.50L at 1.00 atm, calculate how long the gas in the tank will last?

This is what I've done:

Pressure in the tank:

n(He) = (2.00 g He)/(4.00 g/mol) = 0.500 mol He

n(O2) = (65.0 g)/(32 .00 g/mol) = 2.03125 mol O2

n(total) = n(He) + n(O2) = 2.53125 mol

P(total) = (n(total)RT)/V = (2.53125)(0.082057)(298)/5.0
P(total) = 12.379 atm

time to empty:

P1V1 = P2V2
(1.00 atm)(0.50 L) = (12 atm)x,

where x is the volume breathed in one breath

x = 0.0416667 L

in one min: Vbreathed = 15x = 0.625 L

(1 min)/(0.625 L) = t/(5.0 L)

Therefore t = 8.0 min.

Is all that right or instead of using the total pressure in the tank I should use the partial pressure of O2? The answer should be 7.8 min which I'm not getting. But I have also tried it with O2 partial volume and I don't get the answer. Am I missing something? Any help is appreciated. Thanks.
 

Answers and Replies

  • #2
chemisttree
Science Advisor
Homework Helper
Gold Member
3,513
545
Try calculating the number of moles of ideal gas per breath and applying that answer to the number of moles of He/O2 available.

I get 8.2 minutes... 8 minutes if significant figures are observed.
 

Related Threads on Chem, Gases

  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
2
Views
3K
  • Last Post
Replies
10
Views
2K
Replies
5
Views
3K
  • Last Post
Replies
5
Views
4K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
15
Views
989
  • Last Post
Replies
19
Views
10K
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
2
Views
2K
Top