There is a 64 square chessboard. A pawn is at some position on the checkboard. There are only two players on the checkboard: the pawn and king of opposing team. Imagine diagonals drawn from the pawn to the last rank on the chess board. Imagine a square formed by the ends of the diagonals. Prove that if King is outside the square, it can never stop the pawn from promotion (reaching the last rank).(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Chess problem (mathematical)

**Physics Forums | Science Articles, Homework Help, Discussion**