This should be really easy, but I can't seem to find the answer. What does the symbol ##\ominus## mean in the context of Hilbert spaces? As in "##H \ominus A##" where H is a Hilbert space and A is presumably a subspace or subset of H. I'm guessing it's like the inverse of a direct sum, ##\oplus##? As in, if ##H = A \oplus B##, then ##H \ominus A = B##. Is that correct?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Circled minus sign

**Physics Forums | Science Articles, Homework Help, Discussion**