- #1

- 82

- 0

## Main Question or Discussion Point

If there's a spaceship going in a circle (constant speed), and I want to know the time elapsed for me and for the spaceship (say, when it returns after a complete cycle).

So, the ship is always traveling at the same speed v, therefore each time I can go to a certain inertial reference frame and say dt' = dt*(gamma), and gamma always stays the same. so if I integrate it I get that the total time in one system is gamma times the time in the other one.

However, for the ship to travel at constant speed in a circle, it must have a constant acceleration, and I'd expect it have some influence on the calculation (for example, by the previous one I get that the time for the circling ship is the same as I'd get for a ship going in a constand velocity)

But I don't see what's wrong at the first calculation, or how to add the effect of acceleration if it's speed is not changing.

thanks

ibc

So, the ship is always traveling at the same speed v, therefore each time I can go to a certain inertial reference frame and say dt' = dt*(gamma), and gamma always stays the same. so if I integrate it I get that the total time in one system is gamma times the time in the other one.

However, for the ship to travel at constant speed in a circle, it must have a constant acceleration, and I'd expect it have some influence on the calculation (for example, by the previous one I get that the time for the circling ship is the same as I'd get for a ship going in a constand velocity)

But I don't see what's wrong at the first calculation, or how to add the effect of acceleration if it's speed is not changing.

thanks

ibc