My bad for the spelling fail in the title.(adsbygoogle = window.adsbygoogle || []).push({});

1. The problem statement, all variables and given/known data

I am utterly confused with the mathematics in a section of my notes, I swear that it's wrong - and it related to a piece of homework which I cannot understand.

The electric field vector in a z-directed monochromatic EM wave is given by;

http://img213.imageshack.us/img213/4768/58814275.jpg [Broken]

It says that if [itex]\alpha[/itex] = [itex]\pi[/itex]/2, [itex]\theta[/itex] = 0 and [itex]E_{0,x}[/itex] = [itex]E_{0,y}[/itex]

Then

[itex]E_{x}[/itex] = [itex]E_{R}[/itex]cos(kz-wt),

[itex]E_{y}[/itex] = [itex]E_{R}[/itex]sin(kz-wt)

and [itex]E_{R}[/itex] = [itex]\frac{1}{\sqrt{2}}E_{0,x}[/itex]

3. The attempt at a solution

I do not see how the component in y direction is right. Taking the parameters [itex]\alpha[/itex] = [itex]\pi[/itex]/2, [itex]\theta[/itex] = 0, [itex]E_{0,x}[/itex] = [itex]E_{0,y}[/itex]

we get

[itex]E_{0} = \frac{1}{\sqrt{2}}[E_{0,x} \hat{x} + E_{0,x} e^{i(\pi/2)} \hat{y}][/itex]

[itex]e^{i(\pi/2)} = i[/itex]

[itex]E_{0} = \frac{1}{\sqrt{2}}[E_{0,x} \hat{x} + iE_{0,x} \hat{y}][/itex]

Subbing this in the equation for overall E.

[itex] E = Re(\frac{1}{\sqrt{2}}[E_{0,x} \hat{x} + iE_{0,x} \hat{y}]e^{i(kz-wt)}) [/itex]

[itex]E_{R}[/itex] = [itex]\frac{1}{\sqrt{2}}E_{0,x}[/itex]

[itex] E = Re(E_{R}[\hat{x} + i\hat{y}]e^{i(kz-wt)}) [/itex]

[itex] E = Re(E_{R}[\hat{x} + i\hat{y}][cos(kz-wt)+isin(kz-wt)]) [/itex]

[itex] E = E_{R}[\hat{x} cos(kz-wt) - \hat{y}sin(kz-wt)] [/itex]

So then surely for [itex]\alpha[/itex] = [itex]\pi[/itex]/2

We have

[itex]E_{x}[/itex] = [itex]E_{R}cos(kz-wt)[/itex]

[itex]E_{y}[/itex] = -[itex]E_{R}sin(kz-wt)[/itex]

So the [itex]E_{y}[/itex] direction is minus instead?

Similarly for [itex]\alpha[/itex] = [itex]-\pi[/itex]/2 We'd have;

[itex]E_{x}[/itex] = [itex]E_{R}cos(kz-wt)[/itex]

[itex]E_{y}[/itex] = [itex]E_{R}sin(kz-wt)[/itex]

Is this correct?

[itex]\alpha[/itex] = [itex]\pi[/itex]/2 should correspond to left circular polarization, and [itex]\alpha[/itex] = [itex]-\pi[/itex]/2 to right.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Circular Polization type in an EM wave.

Can you offer guidance or do you also need help?

**Physics Forums | Science Articles, Homework Help, Discussion**