Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Circular Polization type in an EM wave.

  1. Dec 18, 2011 #1
    My bad for the spelling fail in the title.

    1. The problem statement, all variables and given/known data

    I am utterly confused with the mathematics in a section of my notes, I swear that it's wrong - and it related to a piece of homework which I cannot understand.

    The electric field vector in a z-directed monochromatic EM wave is given by;

    http://img213.imageshack.us/img213/4768/58814275.jpg [Broken]

    It says that if [itex]\alpha[/itex] = [itex]\pi[/itex]/2, [itex]\theta[/itex] = 0 and [itex]E_{0,x}[/itex] = [itex]E_{0,y}[/itex]


    [itex]E_{x}[/itex] = [itex]E_{R}[/itex]cos(kz-wt),

    [itex]E_{y}[/itex] = [itex]E_{R}[/itex]sin(kz-wt)

    and [itex]E_{R}[/itex] = [itex]\frac{1}{\sqrt{2}}E_{0,x}[/itex]

    3. The attempt at a solution

    I do not see how the component in y direction is right. Taking the parameters [itex]\alpha[/itex] = [itex]\pi[/itex]/2, [itex]\theta[/itex] = 0, [itex]E_{0,x}[/itex] = [itex]E_{0,y}[/itex]

    we get

    [itex]E_{0} = \frac{1}{\sqrt{2}}[E_{0,x} \hat{x} + E_{0,x} e^{i(\pi/2)} \hat{y}][/itex]

    [itex]e^{i(\pi/2)} = i[/itex]

    [itex]E_{0} = \frac{1}{\sqrt{2}}[E_{0,x} \hat{x} + iE_{0,x} \hat{y}][/itex]

    Subbing this in the equation for overall E.

    [itex] E = Re(\frac{1}{\sqrt{2}}[E_{0,x} \hat{x} + iE_{0,x} \hat{y}]e^{i(kz-wt)}) [/itex]

    [itex]E_{R}[/itex] = [itex]\frac{1}{\sqrt{2}}E_{0,x}[/itex]

    [itex] E = Re(E_{R}[\hat{x} + i\hat{y}]e^{i(kz-wt)}) [/itex]

    [itex] E = Re(E_{R}[\hat{x} + i\hat{y}][cos(kz-wt)+isin(kz-wt)]) [/itex]

    [itex] E = E_{R}[\hat{x} cos(kz-wt) - \hat{y}sin(kz-wt)] [/itex]

    So then surely for [itex]\alpha[/itex] = [itex]\pi[/itex]/2

    We have

    [itex]E_{x}[/itex] = [itex]E_{R}cos(kz-wt)[/itex]

    [itex]E_{y}[/itex] = -[itex]E_{R}sin(kz-wt)[/itex]

    So the [itex]E_{y}[/itex] direction is minus instead?

    Similarly for [itex]\alpha[/itex] = [itex]-\pi[/itex]/2 We'd have;

    [itex]E_{x}[/itex] = [itex]E_{R}cos(kz-wt)[/itex]

    [itex]E_{y}[/itex] = [itex]E_{R}sin(kz-wt)[/itex]

    Is this correct?

    [itex]\alpha[/itex] = [itex]\pi[/itex]/2 should correspond to left circular polarization, and [itex]\alpha[/itex] = [itex]-\pi[/itex]/2 to right.
    Last edited by a moderator: May 5, 2017
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?