Circumference of an ellipse

I have two integrals to give the circumference of an ellipse. I can't solve either.
First, using rectangular coordinates,
1/2s=S{[1+(f'(x))^2]^(1/2)}dx taken from x=-a to x=a
Since, y^2=b/a(a^2-x^2)
2y*y'=-2bx/a
y'=-bx/(ay)
[f'(x)]^2=(x^2)/(a^2-x^2)
At this point, I'm already uncomfortable because b is no longer in the equation, and clearly the circumference should depend on both a and b.
Next, using parametrics, I have
s=S[(bcosx)^2+(asinx)^2]^(1/2)dx from x=0 to x=2pi
This integral shows more promise for finding the answer. I expect the answer to be C=pi(a+b) simply because this would reduce to C=(2pi)r for the case when a=b. I've tried manipulating the second integral in every way possible to fit in trig substitution but it just won't work. It doesn't look like integration by parts will help. Of course, there's always the possiblity that these integrals do not give the circumference of an ellipse at all. Even so, it would be satisfying to find an answer.
Can someone give me a hint?
 

chroot

Staff Emeritus
Science Advisor
Gold Member
10,166
34
It should not rightly be called the 'circumference,' which is a word reserved for circles. It is better to call it the 'perimeter.'

This is, in fact, a complicated topic. Here's a good resource to get you started:

http://home.att.net/~numericana/answer/ellipse.htm [Broken]

- Warren
 
Last edited by a moderator:

Related Threads for: Circumference of an ellipse

  • Posted
Replies
4
Views
1K
Replies
7
Views
3K
Replies
2
Views
2K
  • Posted
Replies
12
Views
7K
  • Posted
Replies
6
Views
13K
  • Posted
Replies
3
Views
491
  • Posted
Replies
18
Views
4K
  • Posted
Replies
6
Views
8K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top