1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Clarify definition

  1. Nov 27, 2004 #1


    User Avatar
    Science Advisor
    Homework Helper

    I have a question that asks me to find the Taylor polynomial of degree 2 of the function:

    [tex]f(x, y, z) = (x^2 + 2xy + y^2)e^z[/tex]

    at (1, 2, 0). I have Taylor's Theorem given as follows:

    If [itex]f : V \to \mathbb{R}[/itex], V is open, [itex]V \subseteq \mathbb{R}^n[/itex], [itex]c \in V[/itex], [itex]h \in \mathbb{R}^n[/itex], f is of class [itex]C^{k + 1}[/itex], and [itex]c + th \in V[/itex] if [itex]0 \leq t \leq 1[/itex], then:

    [tex]f(c + h) = \sum _{l = 0} ^{k} \left ( \sum _{\{\alpha \in \mathbb{Z}_+ ^n : |\alpha | = l\} } \frac{D_1 ^{\alpha _1} \dots D_n ^{\alpha _n}f(c)}{l!}(h_1 ^{\alpha _1}, \dots , h_n ^{\alpha _n})\right ) + \sum _{\{\alpha \in \mathbb{Z}_+ ^n : |\alpha | = k + 1\}}\left ( \int _0 ^1 \frac{(1 - t)^k}{k!}D_1 ^{\alpha _1} \dots D_n ^{\alpha _n} f(c + th)(h_1 ^{\alpha _1}, \dots , h_n ^{\alpha _n})dt\right )[/tex]

    Is this ugly thing above the thing I'm supposed to be working with? And if I'm asked for the polynomial of degree 2, then should my value for k be 1 or 2 (or something else)? Thanks.
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted