let [tex] f:U \rightarrow R^n [/tex] be a differentiable function with a differentiable inverse [tex] f^{-1}: f(u) \rightarrow R^n [/tex]. if every closed form on U is exact, show that the same is true for f(U).(adsbygoogle = window.adsbygoogle || []).push({});

Hint: if dw=0 and [tex]f^{\star}w = d\eta, [/tex] consider [tex](f^{-1})^{\star}\eta. [/tex]

---------------------------------------------------

I'm not quite sure what the hint means or how to use it. is it true that [tex]f^{\star} [/tex] is basically another way of writing a differential - eg. df? I didn't really get a clear definition of it in my text.

anyway here's my thoughts so far:

consider [tex]w[/tex] as a form on U. suppose [tex]w[/tex] is closed. then dw = 0. since every closed form on U is exact, then there exists a [tex] \eta [/tex] on U such that [tex]w = d\eta [/tex].

but how is it that [tex] f^{\star}w = d\eta [/tex] (given in the hint)? like, how is this relationship derived? if [tex]w = d\eta [/tex] and also [tex] f^{\star}w = d\eta [/tex], then we have [tex]w = f^{\star}w [/tex]? I find that really confusing, and I'm not sure how to continue the problem. Any help is greatly appreciated. thanks in advance!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Closed and exact forms

**Physics Forums | Science Articles, Homework Help, Discussion**