Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Coaxial capacitor.

  1. Mar 13, 2007 #1
    1. The problem statement, all variables and given/known data
    Consider a coaxial capacitor. If the inner radius is 5mm, the length is 3 cm, and the voltage rating of the capacitor is 2kV, what is the maximum capacitance if the dielectric between the two conductors is 2.3, and E breakdown is 15MV/m.

    2. Relevant equations
    E_r = \frac{\rho_s a}{\epsilon_r r}
    a is the inner radius and r is the radius between the inner and outer conductors at whch we want to find the E field. Since the E field will strongest nearest to the inner conductor, I'm using:
    E_{r,breakdown} = \frac{\rho_s}{\epsilon_r}
    This is because I want to find the surface charge density nearest to the inner conductor that will !begin to breakdown the dielectric. I figure we never even want to start to breakdown the dielectric. I hope this makes sense.
    V = \frac{\rho_s a}{\epsilon_r}[ln(a)-ln(b)]
    with V = 2k I used this to find b (outer radius)
    C = \frac{2\pi\epsilon_r h}{ln(b/a)}

    3. The attempt at a solution
    I derived all the above equations, and pretty much plugged in numbers, and I'm getting about 1.6 farads which seem wrong.

    Actually, thinking about it. I don't see why I can't just use gauss' law to find the enclosed charge (with E = E breakdown) and then divide by 2k
    Last edited: Mar 13, 2007
  2. jcsd
  3. Mar 14, 2007 #2
    I got it. If anyone is interested, the mistake I made was deriving the equations by simply replacing the permittivity of free space with the relative permittivity. In fact you are supposed to replace the permittivity of free space with the permittivity of free space times the relative permittivity.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook