Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Coherent states and fermions

  1. Oct 21, 2013 #1

    ShayanJ

    User Avatar
    Gold Member

    I know coherent states are minimal uncertainty states and can provide a link from quantum to classical physics.But when I hear fermions can't have coherent states,or at least are limited in this sense,I can't see any relationship!
    What's the point?

    And...another thing...is there sth called Classical Coherent State?

    Thanks
     
  2. jcsd
  3. Oct 21, 2013 #2

    DrDu

    User Avatar
    Science Advisor

    Due to the univalence superselection rule, superpositions of states with different numbers of fermions don't exist, hence there are also no fermion coherent states made up from states with different numbers of particles.
    But for a connection with classical physics this isn't important:For photons, position and momentum operators are non-diagonal in particle number while for fermions, position and momentum are diagonal in particle number.
    Hence the coherent states relevant for fermions for discussing the classical limit are wave packets with sharp particle numbers.
     
  4. Oct 21, 2013 #3

    Demystifier

    User Avatar
    Science Advisor

    Coherent states contain many particles in the same state, which is impossible for fermions.
     
  5. Oct 21, 2013 #4

    DrDu

    User Avatar
    Science Advisor

    That depends. You can also construct coherent states for e.g. a harmonic oscillator.
     
  6. Oct 21, 2013 #5

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    There indeed exists a definition for coherent states for fermions which is quite important for the path-integral formulation of (non-relativistic as well as relativistic) quantum field theory. The complication noted by Demystifier needs to be overcome by introducing Grassmann valued c-number fields. See, e.g., my QFT manuscript (Section 4.5):

    http://fias.uni-frankfurt.de/~hees/publ/lect.pdf
     
  7. Oct 21, 2013 #6

    ShayanJ

    User Avatar
    Gold Member

    In (http://dirac.fciencias.unam.mx/papers/limitations.pdf) Univalence superselection rule,is said to be because of the different behavior of bosons and fermions under a [itex] 2 \pi [/itex] rotation.Considering that line of thought,I can only accept that it is not possible to superimpose a state with even number of fermions with a state with odd number of fermions!But its OK to superimpose states which their number of fermions are of the same parity!
    Also,in a one particle problem,the issues you mentioned can't arise!
    As I said,What about one particle(fermion) problems?
    Well,I was looking for the reason that why it seems impossible at first and then a change of view makes it OK!
     
  8. Oct 21, 2013 #7

    DrDu

    User Avatar
    Science Advisor

    Yes, you can have coherent states formed from only even or odd numbers of fermions. Excitations in superconductors are an example and are observable as coherence factors in all kinds of measurements in superconductors.

    The Grassmannian coherent states mentioned by van Hees are indeed an important formal concept in QFT, but they can't be prepared as actual states. So you can't think of classical states of fermions as limits of Grassmannian coherent states.
     
  9. Oct 21, 2013 #8

    strangerep

    User Avatar
    Science Advisor

    Taking the definition of "coherent state" as one of "minimal uncertainty" is too restrictive. Generalized coherent states can be constructed group-theoretically, and the construction is applicable to a surprisingly large number of cases.

    Try this book:

    J-P. Gazeau, "Coherent States in Quantum Physics",
    Wiley 2009, ISBN 978-3-527-40709-5

    https://www.amazon.com/Coherent-Sta...id=1382406929&sr=1-1&keywords=gazeau+coherent

    Chapter 11 discusses fermionic coherent states.
     
  10. Oct 22, 2013 #9

    Demystifier

    User Avatar
    Science Advisor

    The original question in the first post, referring to fermions, suggested that one had the many-particle field-theoretic notion of coherent state in mind.

    By the way, except those two meanings of the term "coherent state", there is also a third meaning: any pure state, i.e., state in the Hilbert space with a well defined phase.
     
  11. Oct 22, 2013 #10

    Demystifier

    User Avatar
    Science Advisor

    True. Or from a mathematical point of view, Grassmannian coherent states are not states in the (physical) complex Hilbert space.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Coherent states and fermions
  1. Coherent States (Replies: 7)

  2. Coherent states (Replies: 3)

  3. Coherent state (Replies: 9)

  4. Coherent States. (Replies: 3)

Loading...