Prove the following result:(adsbygoogle = window.adsbygoogle || []).push({});

let [tex]G[/tex] be a compact Lie group, [tex]H[/tex] its closed subgroup and [tex]X = G/H[/tex]. Let [tex]T(X)[/tex] denote the space of [tex]G[/tex]-invariant differential forms on [tex]X[/tex] (e.g. [tex]\omega \in T(X) \Leftrightarrow \forall g \in G g^{*}\omega = \omega[/tex]). Then [tex]T(X)[/tex] is isomorphic to [tex]H^{*}(X)[/tex], de Rham cohomology space of [tex]X[/tex],

Do you know where I can find the proof of this result?

I have been suggested the following proof strategy:

a) if [tex]\omega[/tex] is [tex]G[/tex]-invariant, then d[tex]\omega = 0[/tex]

b) likewise, d[tex]*\omega = 0[/tex] (Hodge star)

c) by Hodge theory, [tex]\omega[/tex] is harmonic, and each cohomology class has exactly one harmonic representant

Unfortuately, this is not an elementary proof. But perhaps at least a) and b) can be proved easily? A concept for proving a): locally, we can find [tex]G[/tex]-invariant coordinates (i.e. a local basis of [tex]G[/tex]-invariant vector fields which span the tangent space) - how to prove this? In these coordinates [tex]\omega[/tex] has constant coefficients (why?), so d[tex]\omega = 0[/tex]. How about d[tex]*\omega[/tex]?

I'd be glad if someone could help with filling in the details.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Cohomology = invariant forms

Loading...

Similar Threads - Cohomology invariant forms | Date |
---|---|

I Cohomology ring | Nov 5, 2017 |

I Lie groups left invariant vector fields | Mar 10, 2017 |

A Is there a natural paring between homology and cohomology? | Feb 12, 2017 |

A Very basic question about cohomology. | Jan 25, 2017 |

Why only Closed Forms Matter in DeRham Cohomology? | Sep 16, 2014 |

**Physics Forums - The Fusion of Science and Community**