# Cold Air

1. Aug 20, 2011

### Inquiziot

If cold air is more dense, why is higher altitude air colder and less dense?

2. Aug 20, 2011

### Staff: Mentor

Two reasons: space is cold and air cools as it expands(it expands as it rises)

3. Aug 20, 2011

### Inquiziot

Does its heat sink while the air rises?

4. Aug 20, 2011

### Inquiziot

Does the air move up through the heat while the heat stays relatively stationary?
If warm air is thinner than cold air and it expands as it cools, does it somehow re condense?
I'm trying to get my mind around cold dense air versus cold thin air.
So if you took a thin plastic milk carton, (one of the good ones, with the screw on cap) up to a mountain top on a cold day, screwed on the cap and drove down into the valley into a hot day, would the milk carton crush in on itself? or would it expand and maybe pop?

Last edited: Aug 20, 2011
5. Aug 20, 2011

### DaveC426913

Well, the expansion due to heat will far outstrip the compression due to rise in air pressure, so it will most definitely expand.

6. Aug 20, 2011

### Inquiziot

So, in this case cold air is not more dense than warm air, and therefore, cold air is not necessarily more dense than warm air, but only in some situations.

7. Aug 21, 2011

### Studiot

Why do you think cold air is by definition 'more dense'?

Consider a pneumatic tyre just after you have pumped it up.

Is the air inside more or less dense than the surroundings?

And is it hotter or colder than the surroundings?

8. Aug 21, 2011

### Inquiziot

I think cold air is more dense than warm air because if I put an empty water bottle in the freezer over night it will crush in on itself. But I don't know if this principal is universal for cold or hot air.
I think your question is a good one. I think I can make a way to get a thermometer inside a can and then pressurize it to see if it changes.

I squirted a blast of air out of a can for cleaning keyboard dust. I noticed that the can got cold. I assume that the can being pressurized must have been endothermic, therefore the release of pressure must be exothermic. Thus, the temperature decrease.

9. Aug 21, 2011

### billiards

Obviously pressure is very important.

At constant pressure air is colder when it is less dense. If you increase the pressure the density of the air will increase (as you are effectively squashing the air into a smaller volume). Consider the case where you increase the pressure on the air, and yet the density remains the same -- in this case something must be fighting against the squeezing tendency due to the increasing pressure, that something is the increase in kinetic energy of the gas particles, that something is an increase in temperature -- the rise in pressure is met with a rise in temperature if density is to be conserved.

So to the OP. What happens to the pressure at higher altitudes? What are the implications for this on the temperature and density of air?

10. Aug 21, 2011

### Inquiziot

Aren't pressure and density synonymous? At least when it comes to air?

11. Aug 21, 2011

### Staff: Mentor

The cold is from the gases (propellants) in the can.

http://en.wikipedia.org/wiki/Gas_duster#Cooling

12. Aug 21, 2011

### billiards

No. There is an interplay between pressure, density, and temperature.

13. Aug 21, 2011

### Staff: Mentor

Heat is not a thing, separate from the air. The air has a certain amount of heat, which it carries with it as it rises.
If there is moisture in it, the moisture can condense. That's how a thunderstorm works.
The atmosphere has a pressure gradient to it, so it gets less dense as you go up. But at any particular altitude, warmer air is less dense than colder air.
It would collapse.
Not quite, no. At any altitude, any non-rigid volumes of air will have the same pressure, but may have different density.

Last edited: Aug 21, 2011
14. Aug 21, 2011

### DaveC426913

Huh. I thought it would expand but, running some numbers through the formulae, you're right - if we use a tall enough mountain.

Going from Everest to Sea level would triple the pressure, causing the volume of the gas to be reduced to one third.
Going from -20C to 20C is actually going from 253K to 293K, which would only cause an expansion by one seventh.
Net effect is a collapse.

Last edited: Aug 21, 2011
15. Aug 21, 2011

### Studiot

I think enough examples have now been provided to demonstrate that what happens in a gas is more complicated that one simple statement will allow. Further what happens also depends upon outside circumstances.

The question of does a gas cool or warm when it expands depends upon how the expansion is generated and whether the gas is confined or free.

So if we heat a gas in hot air balloon, the gas expands into the confines of the balloon, increasing the pressure and temperature whilst reducing the density.

By constrast if we expand a gas from a cylinder of compressed air into the open air, the gas cools as it expands and its pressure and temperature and density reduces.

Mathematically the controlling physics are known as the Gas Laws and the Laws of Thermodynamics.

go well

16. Aug 21, 2011

### Staff: Mentor

Actually, I read too fast and didn't see the cold mountain part, but thanks for bailing me out!

Regardless, yes, atmospheric pressure drops very quickly as you go up in altitude.

17. Aug 22, 2011

### billiards

I confirm this as I have inadvertently done this experiment in reverse. Buy a packet of crisps at sea level. Drive up a thousand metres or so and look at your crisp packet. In my experience the crisp packet has expanded.

18. Aug 22, 2011

### klimatos

In atmospheric physics, there are two kinds of density.

One is mass density, that is, kilograms per cubic meter. The mass density of a volume of air depends upon its composition, its temperature, and its pressure. Colder humid air is less dense than slightly warmer dry air at the same pressure, because the mass of a vapor molecule is less than the mass of a dry air molecule. However, air at high elevations is less dense than air at lower elevations because the number density is less.

The second density is number density, that is the number of molecules per cubic meter. The formula follows Avogadro's Law and is n= P/kT. Here n is the number of molecules per cubic meter, P is the pressure in Pascals, k is Boltzman's Constant, and T is the temperature in Kelvins. Obviously, the number density of a parcel of air depends upon both the temperature and the pressure. The number density of high altitude air is less than that of low elevation air at the same temperature because the number density reflects the Maxwell molecular speed distribution for any given temperature. This is a common exercise in discussions of kinetic gas theory and statistical mechanics. That is, showing that the number density reflects the barometric formula.

19. Aug 23, 2011

### DaveC426913

It will though it is not as simple as that. You tested pressure change only, did you test temp change? Were your crisps* exposed to below freezing temps a thousand metres up?

*whatever crisps are...

20. Aug 23, 2011

### Studiot

I think this is a case for the nspcc.

(National Society for the Prevention of Cruelty to Crisps)

21. Aug 23, 2011

I've had something of the same experience, but in reverse to yours.

I once bought some juice boxes (big mistake, as those tiny, child-sized straws are really hard for an adult to work with), and, as I live at sea level, I noticed that the boxes looked a little crushed, and, when I stuck the straw into them, they began to drip the juice out in a steady stream within about a minute, before I'd even sucked on the straw. The only explanation I can think of is that the air pressure differential between where it was packed (which I assume must be somewhere near Top-O'-the-Universe, Colorado, or, possibly, the moon!) and where I live must have been great enough to compress the fluid content of the juice box to a certain maximum, with state of compression the puncture of the box by the straw released, allowing the compressed juice to flow into the less-dense humid sea-level air.

And, if anybody wants to argue with my position on the issue of the siphon effect along the lines of that Australian guy's bizarre gravity theory, please start a new thread under "General Physics". (I'll be looking for it, as I occasionally need a sure-thing victory!)

22. Aug 24, 2011

### billiards

Are you having a giraffe or what? My favourite are prawn cocktail.

23. Aug 24, 2011

### DaveC426913

I'm presuming some sort of potato chip. But I'm also presuming some sort of nuance to it. Like, instead of potato, it's made out of vegamite.

24. Aug 24, 2011

### DaveC426913

I have noticed they do this too. I think it's endemic, not situational.

25. Aug 25, 2011

### Inquiziot

So if you took a liter of cold air and counted all the molecules, it would have more than what you would have in a liter of warm air.
If you then compressed each of them into 500 ml you would double the atmospheric pressure. Right?
If you compressed them again into 250 ml, you would double them again. Right?
Because the cold air has more mass, doesn't the atmospheric pressure exponentiate at a different rate than the warm air? Double is double. Right?

If you blow up a balloon on a hot day and carry it into a walk-in cold box it should rise to the ceiling.
But if you carried it in and then popped it the warm air would mix with the cold air before it could rise. Where would the warmth go?

If you hit seven golf balls at seven o'clock with a seven iron the balls will go a certain distance.
If you wait until eight o'clock and hit eight balls with an eight iron they go about the same distance.
That's because the sun comes up, hits the ground and emits radiant heat. This warms the air and the molecules push against each other and the air expands and becomes thinner. Thus, less resistance on the golf balls.
assuming you didn't get tired.

Sorry I went away. I went to PF jail until I got a new nickname.
I don't like it. I want to change it. I hope I can.
But if they don't let me I'll have another constant reminder of indiscretions past.

Last edited by a moderator: Aug 25, 2011