- #1
- 2
- 0
This question is out of the book, graduate problems in physics. problem 4 mathematical physics.
In dealing 52 cards among two teams (containing two partners), what is the probability a particular team will obtain one complete suit between them?
To determine the answer we need to find the number of ways one team can be dealt one particular suit regardless of whether they have another complete suit. and the answer is (39!)(26!)/(13!). but I don't understand how they got this part to help solve the answer. Can you help me?
I know there are 13 cards in a suit and (52-13)=39 which is the number of cards left after one team has a suit. I don't understand what the 26 represents. But I do know that with combinatorics, the number in the numerator is the total probability of cards and the number in the deminator is the number by which you over count the total probability of cards.
Thanks
In dealing 52 cards among two teams (containing two partners), what is the probability a particular team will obtain one complete suit between them?
To determine the answer we need to find the number of ways one team can be dealt one particular suit regardless of whether they have another complete suit. and the answer is (39!)(26!)/(13!). but I don't understand how they got this part to help solve the answer. Can you help me?
I know there are 13 cards in a suit and (52-13)=39 which is the number of cards left after one team has a suit. I don't understand what the 26 represents. But I do know that with combinatorics, the number in the numerator is the total probability of cards and the number in the deminator is the number by which you over count the total probability of cards.
Thanks