Commutation relations - field operators to ladder operators

  • #1
1,344
33
I would like to show that the commutation relations ##[a_{\vec{p}},a_{\vec{q}}]=[a_{\vec{p}}^{\dagger},a_{\vec{q}}^{\dagger}]=0## and ##[a_{\vec{p}},a_{\vec{q}}^{\dagger}]=(2\pi)^{3}\delta^{(3)}(\vec{p}-\vec{q})## imply the commutation relations ##[\phi(\vec{x}),\phi(\vec{y})]=[\pi(\vec{x}),\pi(\vec{y})]=0## and ##[\phi(\vec{x}),\pi(\vec{y})]=i\delta^{(3)}(\vec{x}-\vec{y})##.

Firstly,

##[\phi(\vec{x}),\phi(\vec{y})]##

##=\Big[ \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2\omega_{\vec{p}}}}(a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}+a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}}), \int \frac{d^{3}q}{(2\pi)^{3}} \frac{1}{\sqrt{2\omega_{\vec{q}}}}(a_{\vec{q}}e^{i\vec{q}\cdot{\vec{y}}}+a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{y}}}) \Big]##

##=\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{6}}\frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big[ (a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}+a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}}), (a_{\vec{q}}e^{i\vec{q}\cdot{\vec{y}}}+a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{y}}}) \Big]##

##=\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{6}}\frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big( [a_{\vec{p}},a_{\vec{q}}]e^{i(\vec{p}\cdot{\vec{x}}+\vec{q}\cdot{\vec{y}})}+[a_{\vec{p}}^{\dagger},a_{\vec{q}}]e^{i(-\vec{p}\cdot{\vec{x}}+\vec{q}\cdot{\vec{y}})}+[a_{\vec{p}},a_{\vec{q}}^{\dagger}]e^{i(\vec{p}\cdot{\vec{x}}-\vec{q}\cdot{\vec{y}})}+[a_{\vec{p}}^{\dagger},a_{\vec{q}}^{\dagger}]e^{i(-\vec{p}\cdot{\vec{x}}-\vec{q}\cdot{\vec{y}})} \Big)##

##=\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{6}}\frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big( -[a_{\vec{q}},a_{\vec{p}}^{\dagger}]e^{i(-\vec{p}\cdot{\vec{x}}+\vec{q}\cdot{\vec{y}})}+[a_{\vec{p}},a_{\vec{q}}^{\dagger}]e^{i(\vec{p}\cdot{\vec{x}}-\vec{q}\cdot{\vec{y}})} \Big)##, where we used the relation ##[a_{\vec{p}},a_{\vec{q}}]=[a_{\vec{p}}^{\dagger},a_{\vec{q}}^{\dagger}]=0##

##=\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{6}}\frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big( -(2\pi)^{3}\delta^{(3)}(\vec{q}-\vec{p})e^{i(-\vec{p}\cdot{\vec{x}}+\vec{q}\cdot{\vec{y}})}+(2\pi)^{3}\delta^{(3)}(\vec{p}-\vec{q})e^{i(\vec{p}\cdot{\vec{x}}-\vec{q}\cdot{\vec{y}})} \Big)##

##=\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{2\omega_{\vec{p}}}\Big( -e^{i\vec{p}\cdot{(\vec{y}-\vec{x})}}+e^{i\vec{p}\cdot{(\vec{x}-\vec{y})}}\Big)##

##=\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{2\omega_{\vec{p}}}\Big( -e^{i\vec{p}\cdot{(\vec{x}-\vec{y})}}+e^{i\vec{p}\cdot{(\vec{x}-\vec{y})}}\Big)##, where I've flipped the limits of integration on the first term and used the relation ##\omega_{\vec{p}}=\omega_{-\vec{p}}##

##=0##.

Is my working correct?
 
Physics news on Phys.org
  • #2


Yes, your working is correct. You have correctly used the commutation relations for the creation and annihilation operators to show that the commutation relations for the field operator and its conjugate momentum are satisfied. Well done!
 

Suggested for: Commutation relations - field operators to ladder operators

Replies
2
Views
856
Replies
0
Views
292
Replies
3
Views
622
Replies
2
Views
589
Replies
5
Views
667
Replies
30
Views
1K
Replies
2
Views
438
Replies
3
Views
655
Back
Top