Commutation relations - field operators to ladder operators

In summary, by using the commutation relations for the creation and annihilation operators, it can be shown that the commutation relations for the field operator and its conjugate momentum are satisfied. This confirms the consistency of the quantum field theory.
  • #1
spaghetti3451
1,344
33
I would like to show that the commutation relations ##[a_{\vec{p}},a_{\vec{q}}]=[a_{\vec{p}}^{\dagger},a_{\vec{q}}^{\dagger}]=0## and ##[a_{\vec{p}},a_{\vec{q}}^{\dagger}]=(2\pi)^{3}\delta^{(3)}(\vec{p}-\vec{q})## imply the commutation relations ##[\phi(\vec{x}),\phi(\vec{y})]=[\pi(\vec{x}),\pi(\vec{y})]=0## and ##[\phi(\vec{x}),\pi(\vec{y})]=i\delta^{(3)}(\vec{x}-\vec{y})##.

Firstly,

##[\phi(\vec{x}),\phi(\vec{y})]##

##=\Big[ \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2\omega_{\vec{p}}}}(a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}+a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}}), \int \frac{d^{3}q}{(2\pi)^{3}} \frac{1}{\sqrt{2\omega_{\vec{q}}}}(a_{\vec{q}}e^{i\vec{q}\cdot{\vec{y}}}+a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{y}}}) \Big]##

##=\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{6}}\frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big[ (a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}+a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}}), (a_{\vec{q}}e^{i\vec{q}\cdot{\vec{y}}}+a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{y}}}) \Big]##

##=\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{6}}\frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big( [a_{\vec{p}},a_{\vec{q}}]e^{i(\vec{p}\cdot{\vec{x}}+\vec{q}\cdot{\vec{y}})}+[a_{\vec{p}}^{\dagger},a_{\vec{q}}]e^{i(-\vec{p}\cdot{\vec{x}}+\vec{q}\cdot{\vec{y}})}+[a_{\vec{p}},a_{\vec{q}}^{\dagger}]e^{i(\vec{p}\cdot{\vec{x}}-\vec{q}\cdot{\vec{y}})}+[a_{\vec{p}}^{\dagger},a_{\vec{q}}^{\dagger}]e^{i(-\vec{p}\cdot{\vec{x}}-\vec{q}\cdot{\vec{y}})} \Big)##

##=\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{6}}\frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big( -[a_{\vec{q}},a_{\vec{p}}^{\dagger}]e^{i(-\vec{p}\cdot{\vec{x}}+\vec{q}\cdot{\vec{y}})}+[a_{\vec{p}},a_{\vec{q}}^{\dagger}]e^{i(\vec{p}\cdot{\vec{x}}-\vec{q}\cdot{\vec{y}})} \Big)##, where we used the relation ##[a_{\vec{p}},a_{\vec{q}}]=[a_{\vec{p}}^{\dagger},a_{\vec{q}}^{\dagger}]=0##

##=\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{6}}\frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big( -(2\pi)^{3}\delta^{(3)}(\vec{q}-\vec{p})e^{i(-\vec{p}\cdot{\vec{x}}+\vec{q}\cdot{\vec{y}})}+(2\pi)^{3}\delta^{(3)}(\vec{p}-\vec{q})e^{i(\vec{p}\cdot{\vec{x}}-\vec{q}\cdot{\vec{y}})} \Big)##

##=\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{2\omega_{\vec{p}}}\Big( -e^{i\vec{p}\cdot{(\vec{y}-\vec{x})}}+e^{i\vec{p}\cdot{(\vec{x}-\vec{y})}}\Big)##

##=\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{2\omega_{\vec{p}}}\Big( -e^{i\vec{p}\cdot{(\vec{x}-\vec{y})}}+e^{i\vec{p}\cdot{(\vec{x}-\vec{y})}}\Big)##, where I've flipped the limits of integration on the first term and used the relation ##\omega_{\vec{p}}=\omega_{-\vec{p}}##

##=0##.

Is my working correct?
 
Physics news on Phys.org
  • #2


Yes, your working is correct. You have correctly used the commutation relations for the creation and annihilation operators to show that the commutation relations for the field operator and its conjugate momentum are satisfied. Well done!
 

1. What are commutation relations?

Commutation relations are mathematical relationships between operators that determine how they interact with each other.

2. What is the significance of commutation relations in quantum mechanics?

In quantum mechanics, commutation relations play a crucial role in determining the behavior of physical systems and their observables. They help us understand the fundamental principles of uncertainty and the measurement process.

3. How do commutation relations relate to ladder operators?

Commutation relations are used to define the properties of ladder operators, which are mathematical operators that represent the creation and annihilation of particles in quantum systems. These operators are essential in describing the behavior of quantum systems and their energy levels.

4. Can commutation relations be used to derive other important relations in quantum mechanics?

Yes, commutation relations can be used to derive other important relationships, such as the Heisenberg uncertainty principle and the canonical commutation relations. These relations provide valuable insights into the behavior of quantum systems and their observables.

5. Are commutation relations always valid in quantum mechanics?

No, commutation relations are only valid for certain operators and may not hold true for all possible combinations. It is important to carefully consider the properties and limitations of commutation relations when applying them in quantum mechanics calculations and experiments.

Similar threads

  • Quantum Physics
Replies
5
Views
498
  • Quantum Physics
Replies
4
Views
2K
Replies
4
Views
989
Replies
1
Views
547
Replies
3
Views
576
  • Quantum Physics
Replies
6
Views
1K
  • Quantum Physics
Replies
2
Views
2K
  • Quantum Physics
Replies
1
Views
604
  • Quantum Physics
Replies
4
Views
1K
Replies
10
Views
923
Back
Top